Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Ta có : BD là đg trung tuyến của tam giác ABC (gt)
=> D là tđ của AC (1)
CE là đg trung tuyến của tam giác ABC (gt)
=>E là tđ của AB (2)
Từ (1),(2)
=>DE là đg trung bình của tam giác ABC
=>DE // BC : DE=1/2 BC
Thay BC=10cm
=>DE=5cm
2)
a) Ta có:MN // BC (gt)
=>MI // BC
Lại có:ED // BC (cmt)
=>MI // BC
Xét tam giác BED,có:
MI // BC
I là tđ của BD (gt)
=> MI là đg trung bình của tam giác BED
=>M là tđ của BE
b) Ta có: MN // BC (gt)
=>MK // BC
Xét tam giác BEC,có:
MK // BC (cmt)
M là tđ của BE (cmt)
=> MK là đg trung bình của tam giác BEC
c) ko đề
d) MK là đg trung bình của tam giác BEC (cmt)
=>MK=1/2 BC
=>MI + IK =1/2 BC
Thay MI =1/2 DE (MI là đg trung bình của tam giác BED)
=>1/2 DE + IK = 1/2 BC
=> IK =1/2 (BC-DE)
=>IK=1/2 DE (vì DE =1/2 BC)
Có: MI =1/2 DE (cmt)
KN =1/2 DE (cmt)
=>MI=KN=IK (=1/2 DE)
a. -Xét △ABC: AD là đường phân giác (gt)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{CD}\) (định lí về đường phân giác trong tam giác)
\(\Rightarrow\dfrac{AB}{16}=\dfrac{6}{8}\)
\(\Rightarrow AB=\dfrac{6}{8}.16=12\left(cm\right)\)
b) -Xét △ABC: DE//AB (gt)
\(\Rightarrow\dfrac{EA}{EC}=\dfrac{BD}{CD}\) (định lí Ta-let)
Mà \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\left(cmt\right)\)
\(\Rightarrow\dfrac{EA}{EC}=\dfrac{AB}{AC}\) nên \(AC.EA=AB.EC\)
c) -Ta có: \(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác của \(\widehat{BAC}\))
Mà \(\widehat{BAD}=\widehat{ADE}\) (AB//DE và so le trong)
\(\Rightarrow\widehat{CAD}=\widehat{ADE}\) nên △ADE cân tại E.
\(\Rightarrow AE=DE\)
-Xét △AIE: AP là đường phân giác.
\(\Rightarrow\dfrac{PE}{PI}=\dfrac{AE}{AI}\)(định lí về đường phân giác trong tam giác)
Mà \(AE=DE\left(cmt\right)\); \(AI=BI\) (I là trung điểm AB)
\(\Rightarrow\dfrac{PE}{PI}=\dfrac{DE}{BI}\)
-Xét △QDE: DE//BI.
\(\Rightarrow\dfrac{QD}{QI}=\dfrac{DE}{BI}\) (hệ quả định lí Ta-let)
Mà \(\dfrac{PE}{PI}=\dfrac{DE}{BI}\) nên \(\dfrac{PE}{PI}=\dfrac{QD}{QI}\)