Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét △ ABC. Kẻ đường cao AH. Gọi M là trung điểm của AC, N là trung điểm của AB.
Từ M kẻ đường thẳng song song AH cắt BC tại K
Từ N kẻ đường thẳng song song AH cắt BC tại L
Từ A kẻ đường thẳng song song BC cắt hai đường thẳng MK và NL tại T và R
Ta có: △ MKC = △ MTA
△ NLB = △ NAR
Cắt △ ABC theo đường MK và NL ta ghép lại được một hình chữ nhật KTRL có diện tích bằng diện tích tam giác ABC
a/
\(S_{\Delta ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.6.4=12cm^2\)
b/
Gọi D và E lần lượt là trung điểm của AB và AC
Từ B dựng đường thẳng vuông góc BC cắt DE tại M
Từ C dựng đường thẳng vuông góc BC cắt DE tại N
Ta có
DA=DB; EA=EC => DE là đường trung bình của tg ABC => DE//BC => MN//BC
Ta có
\(BM\perp BC;CN\perp BC\)=> BM//CN (cùng vuông góc với BC)
=> BCNM là hình bình hành (tứ giác có các cặp cạnh đối // với nhau là hbh)
Mà \(\widehat{DBC}=90^o\)
=> BCNM là HCN (Hình bình hành có 1 góc vuông là HCN)
Ta có
Gọi I là giao của DE với AH ta có
DE//BC (cmt); \(AH\perp BC\Rightarrow AH\perp DE\)
DE//BC (cmt) \(\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}=\frac{AI}{HI}=1\) => I là trung điểm của AH => IA=IH
Ta có
\(S_{\Delta ABC}=S_{BCED}+S_{\Delta ADI}+S_{AEI}\) (1)
\(S_{BCNM}=S_{BCED}+S_{\Delta BDM}+S_{\Delta CEN}\) (2)
Xét tg vuông ADI và tg vuông BDM có
DA=DB; \(\widehat{ADI}=\widehat{BDM}\) (góc đối đỉnh) => tg ADI = tg BDM (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) (3)
C/m tương tự ta cũng có tg AEI = tg CEN (4)
Từ (1) (2) (3) (4) \(\Rightarrow S_{\Delta ABC}=S_{BCNM}\)
=> 3 mảnh cắt từ tg ABC là hình thang BCED; tg ADI và tg AEI
Ta có DE là đường trung bình của tg ABC => \(DE=\frac{BC}{2}=\frac{6}{2}=3cm\)
IA=IH (cmt) => IA=IH=4:2=2 cm
\(S_{BCED}=\frac{\left(BC+DE\right).IH}{2}=\frac{\left(6+3\right).2}{2}=9cm^2\)
\(S_{\Delta ADI}+S_{\Delta AEI}=S_{\Delta ADE}=\frac{1}{2}.DE.IA=\frac{1}{2}.3.2=3cm^2\)
Do tg ABC không có thêm điều kiện nào nên không thể tính riêng rẽ diện tích của hai tg ADI và AEI
a. Xét tam giác ABC vuông tại A có:
AB2+AC2=BC2 (định lý Py-ta-go)
=>62+AC2=BC2
=>AC=8 cm.
=> SABC=AB.AC=6.8=48 (cm)
b. Ta có: SABC=AB.AC=BC.AH
=>6.8=10.AH
=>AH=4,8 cm.
a/
diện tích tam giác ABC là:
\(\dfrac{6.10}{2}\)=30 (cm2)
đường cao AH là
30:10=3 cm
Bài 1 Giải
Chu vi HCN là:
(12+8).2= 40(cm)
Diện tích HCN là:
12.8= 96(cm)
Bài 2 Chu vi hình vuông là:
20.4=80(cm)
Mà chu vi hình vuông bằng chu vi HCN nên:
Chiều rộng HCN là:
(80:2) -25=15(cm)
Diện tích HCN là:
15.25=375(cm)
Bài 3 Độ dài cạnh BC là:
120:10.2=24(cm)
Bài 4 Diện tích tam giác ABC là:
( 5.8):2 = 20(cm)
Chúc bn hok tốt~~
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
a. Có: tam giác ABC vuông tại A (gt)
=> góc BAC = 90o
Có: AH là đường cao của tam giác ABC (gt)
=> góc AHB = góc AHC = 90o
Xet tam giác HBA và tam giác ABC, có:
góc AHB = góc BAC (=90o)
góc B chung
=> tam giác HBA ~ tam giác ABC (g.g)
b. Xét tam giác ABC vuông tại A, có:
AB2 + AC2 = BC2 (định lý Py-ta-go)
32 + 42 = BC2 (thay số)
BC2 = 25
=> BC = 5
Vậy...