Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔCAB vuông tại A có
góc B chung
=>ΔADB đồng dạng với ΔCAB
b: BC=căn 12^2+9^2=15cm
AD=12*9/15=7,2cm

a: Xét ΔADB vuông tại D và ΔCAB vuông tại A có
góc B chung
=>ΔADB đồng dạng với ΔCAB
b: BC=căn 12^2+9^2=15cm
AD=12*9/15=7,2cm

a) t/g AHC vuông tại H có: ACH + CAH = 90o (1)
t/g AHB vuông tại H có: ABH + BAH = 90o (2)
Từ (1) và (2) lại có: ACH = ABH (gt) suy ra CAH = BAH
t/g ACH = t/g ABH ( cạnh góc vuông và góc nhọn kề)
=> AC = AB (2 cạnh tương ứng) (đpcm)
b) t/g ACH = t/g ABH (cmt)
=> ACH = ABH (2 góc tương ứng)
Lại có: ACH + ACE = ABH + ABD = 180o
=> ACE = ABD
t/g ACE = t/g ABD (c.g.c) (đpcm)
c) Có: EC = BD (gt)
=> EC + BC = BD + BC
=> BE = CD
t/g ACD = t/g ABE (c.g.c) (đpcm)
d) t/g ACH = t/g ABH (câu a)
=> CH = BH (2 cạnh tương ứng)
Mà: CE = BD (gt)
Nên CH + CE = BH + BD
=> HE = HD
t/g AHE = t/g AHD (2 cạnh góc vuông)
=> EAH = DAH (2 góc tương ứng)
=> AH là phân giác DAE (đpcm)

Xét ΔCAB và ΔCED có
\(\widehat{CAB}=\widehat{CED}\)(hai góc so le trong, DE//AB)
\(\widehat{ACB}=\widehat{ECD}\)(hai góc đối đỉnh)
Do đó: ΔCAB đồng dạng với ΔCED
=>\(\dfrac{CA}{CE}=\dfrac{AB}{ED}=\dfrac{CB}{CD}\)
=>\(\dfrac{12}{CE}=\dfrac{18}{ED}=\dfrac{9}{3}=3\)
=>\(CE=\dfrac{12}{3}=4\left(cm\right);ED=\dfrac{18}{3}=6\left(cm\right)\)

A B C D E H K
Tam giác BAD có AB = BD =>tam giác ABD cân tại B => đường cao BH đồng thời là đường trung tuyến của tam giác => H là trung điểm của AD (1)
Tương tự , ta CM được K là trung điểm của AE(2)
Từ (1) và (2) => HK là đường trung bình của tam giác ADE
=> HK//DE (đpcm)
Và HK =1/2 DE (3)
b) Ta có : chu vi tam giác ABC=10 cm => AB+BC+CA=10(cm)
mà BD=AB , CE=AC =>DB+BC+CE=10 =>DE=10 (cm)(4)
từ (3) và (4) => HK=5(cm)

A B C H D
Ta có : Tam giác ABC dều
Mà AC = 7cm
Nên BC = 7cm
Lại có H là trung điểm của BC
Nên \(CH=\frac{BC}{2}=\frac{7}{2}=3,5\left(cm\right)\)
Ta có : DH = CH + CD = 3,5 + 8 = 11,5 cm
Xét tam giác AHC có AHC = 90 độ (AH vuông góc với BC)
Áp dụng dịnh lý pitago : AC2 = AH2 + CH2
<=> AH2 = AC2 - CH2 = 72 - 3,52 =