Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{6}{8}=\dfrac{7,5}{10}=\dfrac{3}{4}\)
=> MN // BC (Ta lét đảo)
b, Vì MN // BC
Theo hệ quả Ta lét \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Leftrightarrow\dfrac{6}{8}=\dfrac{MN}{12}\Leftrightarrow MN=9cm\)
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: MN//BC
=>MN/BC=AM/AB=3/8
=>MN=27/8cm
Xét ΔABC có MN//BC
nên AM/AB=AN/AC
=>AN/9=4/6=2/3
=>AN=6cm
a: Xét ΔABC có
\(\dfrac{AH}{AB}=\dfrac{AK}{AC}\left(=\dfrac{2}{3}\right)\)
Do đó: HK//BC
b: Xét ΔBAC có HK//BC
nên \(\dfrac{HK}{BC}=\dfrac{AH}{AB}\)
\(\Leftrightarrow HK=\dfrac{2}{3}\cdot18=12\left(cm\right)\)
c: Xét ΔAMB có HI//BM
nên \(\dfrac{HI}{BM}=\dfrac{AH}{AB}\)
hay \(\dfrac{HI}{BM}=\dfrac{2}{3}\left(1\right)\)
Xét ΔAMC có IK//MC
nên \(\dfrac{IK}{MC}=\dfrac{AK}{AC}\)
hay \(\dfrac{IK}{MC}=\dfrac{2}{3}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(\dfrac{IH}{MB}=\dfrac{IK}{MC}\)
mà MB=MC
nên IH=IK
hay I là trung điểm của HK
a) Do MN//BC nên theo hệ quả của ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)
\(\Rightarrow\) \(\dfrac{2}{4}\) = \(\dfrac{MN}{6}\)\(\Rightarrow\) MN = \(\dfrac{2\times6}{4}\)\(\Rightarrow\) MN = 3 cm
b) Do MN//BC nên theo ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AC}\)
\(\Rightarrow\)\(\dfrac{12}{15}\)=\(\dfrac{AN}{18}\)\(\Rightarrow\) AN = \(\dfrac{12\times18}{15}\) = 14,4 cm
a: AN+CN=AC
=>AN=20-15=5cm
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Xét ΔAMN và ΔNPC có
góc AMN=góc NPC(=góc B)
góc ANM=góc NCP
=>ΔAMN đồng dạng với ΔNPC
ta có MN song song BC
áp dụng định lí Ta Lét ta có
AM/AB=AN/AC<=>AN=(AM.AC)/AB=(6.15)/9=10 cm
Giải
a/Xét tam giác ABC có BN phân giác :
=>AN/NC=AB/BC
=>AN+NC/NC=AB+BC/BC
=>AC/NC=AB+BC/BC
=>9/NC=6+12/12
=>NC=12.9/6+12=6(cm)
=>NA=AC-NC=9-6=3(cm)
b/ Ta có: AM/AB=2/6=1/3
AN/AC=3/9=1/3
=>AM/AB=AN/AC
Xét tam giác AMN và tam giác ABC:
∠A chung;AM/AB=AN/AC
=> MN//BC
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)\(\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
M\(\in\)AB(gt)
N\(\in\)AC(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
a, xét tam giác AMN và tam giác ABC có:
\(\frac{AM}{AB}=\frac{4}{6}=\frac{2}{3}\)
\(\frac{AN}{NC}=\frac{6}{9}=\frac{2}{3}\)
=> MN // BC( hệ quả định lí ta -let)
b,vì MN// BC=> \(\frac{AM}{MB}=\frac{MN}{BC}\)hay \(\frac{4}{6}=\frac{MN}{12}\Rightarrow MN=4.12:6=8cm\)