K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2016

Ai tl cau nay gium mk vs dc k

20 tháng 2 2016

Xét tam giác ABC có

AB=BC(gt)

=> ABC cân tại B

Xét tam giác BDA và tam giác BDC có :

AB=BC( gt)

gócABD=gócCBD(gt)

BD cạnh chung

=> tam giác BDA=tam giác BDC (c-g-c)

=>DA=DC (cctư)

20 tháng 11 2022

\(\overrightarrow{AB}\cdot\overrightarrow{CB}=4\)

=>AB*CB*cosB=4

=>AB*CB*AB/BC=4

=>BA^2=4

=>AB=2

\(\overrightarrow{AC}\cdot\overrightarrow{BC}=9\)

=>AC*BC*cosC=9

=>AC*BC*AC/BC=9

=>AC=3

=>\(BC=\sqrt{13}\)

17 tháng 7 2017

ai giup mik nha mik tich cho

17 tháng 7 2017

Ta có hình vẽ:

A B C D E H I K

a/ Xét hai tam giác vuông ABD và ACE có:

AB = AC (tam giác ABC cân tại A)

A: góc chung

=> tam giác ABD = tam giác ACE.

b/ Ta có: BD và CE là đường cao của tam giác ABC

Mà BD cắt CE tại H

=> H là trực tâm của tam giác ABC

=> AH là đường cao còn lại của tam giác ABC

Vì tam giác ABC cân

Nên AH cũng là đường trung trực của BC.

c/ Ta có: tam giác ABD = tam giác ACE (Cmt)

=> AD = AE (hai cạnh t/ư)

=> tam giác ADE cân tại A

=> góc ADE = góc AED.

Ta có: \(\widehat{ADE}+\widehat{AED}+\widehat{A}=180^0\)

hay \(2.\widehat{ADE}=180^0-\widehat{A}\) (Vì \(\widehat{ADE}=\widehat{AED}\) )

=> \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)

Ta có: tam giác ABC cân tại A

=> góc B = góc C.

Ta có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)

hay \(2.\widehat{ACB}=180^0-\widehat{A}\) (Vì \(\widehat{ABC}=\widehat{ACB}\))

=> \(\widehat{ACB}=\dfrac{180^0-\widehat{A}}{2}\)

Ta có: \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)

\(\widehat{ACB}=\dfrac{180^0-\widehat{A}}{2}\)

=> \(\widehat{ADE}=\widehat{ACB}\)

Mà hai góc này ở vị trí slt

=> DE // BC (đpcm).

8 tháng 2 2019

a, Ta có :tam giác ABD và tam giác ACE có
$\widehat{AEC}=\widehat{ADB}=90$
Góc A chung
=> $\bigtriangleup ABD\sim \bigtriangleup ACE$
b, Tương tự câu a ta CM được $\Delta HEB\sim \Delta HDC (g.g)$
=>$\frac{HE}{HD}= \frac{HB}{HC}\rightarrow HD.HB=HE.HC$

a: Xét ΔABC có 

AD là đường cao

BE là đường cao

AD cắt BE tại I

Do đó: I là trực tâm của ΔABC

Suy ra: CI⊥AB tại K

hay \(\widehat{AKC}=90^0\)

b: Xét tứ giác CDIE có 

\(\widehat{CDI}+\widehat{CEI}=180^0\)

Do đó: CDIE là tứ giác nội tiếp

Suy ra: \(\widehat{DIE}+\widehat{ECD}=180^0\)

hay \(\widehat{DIE}=140^0\)

=>\(\widehat{BID}=40^0\)

AH
Akai Haruma
Giáo viên
25 tháng 1 2021

Lời giải:Áp dụng định lý cos ta có:

\(\cos A=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{-1}{2}\Rightarrow \widehat{A}=120^0\)

\(\cos B=\frac{BC^2+BA^2-AC^2}{2BC.BA}=\frac{-\sqrt{2}}{2}\Rightarrow \widehat{B}=45^0\)

\(\widehat{C}=180^0-(\widehat{A}+\widehat{B})=180^0-(120^0+45^0)=15^0\)

\(\widehat{ADB}=180^0-(\frac{\widehat{A}}{2}+\widehat{B})=180^0-(\frac{120^0}{2}+45^0)=75^0\)