Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AB*AF=AE*AC: AB/AE=AC/AF
b: Xet ΔABC và ΔAEF có
AB/AE=AC/AF
góc BAC chung
=>ΔABC đồng dạng với ΔAEF
góc BFC=góc BDA=90 độ
mà góc B chung
nên ΔBFC đồng dạng với ΔBDA
=>BF/BD=BC/BA
=>BF/BC=BD/BA
=>ΔBFD đồng dạng với ΔBCA
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
\(\widehat{EAF}\) chung
DO đó: ΔAEF\(\sim\)ΔABC
a) Xét \(\Delta ABE\) và \(\Delta ACF:\)
\(\widehat{A}chung.\\ \widehat{AEB}=\widehat{AFC}\left(=90^o\right).\\ \Rightarrow\Delta ABE\sim\Delta ACF\left(g-g\right).\)
b) Xét \(\Delta AEF\) và \(\Delta ABC:\)
\(\widehat{A}chung.\\ \dfrac{AE}{AB}=\dfrac{AF}{AC}\left(\Delta ABE\sim\Delta ACF\right).\\ \Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right).\)
TK
https://hoc24.vn/cau-hoi/bai-1-cho-d-abc-cac-duong-cao-be-va-cf-cat-nhau-tai-ha-chung-minh-tam-giac-abe-dong-dang-voi-tam-giac-afcb-chung-minh-tam-giac-aef-dong-dang-voi.5075521880097
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
a,Xét \(\Delta ABE\)và \(\Delta ACF\)có:
\(\widehat{A}\)Chung
\(\widehat{E}=\widehat{F}=90^0\)
\(\Rightarrow\Delta ABE~\Delta ACF\left(g.g\right)\)
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)
Xét \(\Delta AEF\)và \(\Delta ABC\)có
\(\widehat{A}\)Chung
\(\frac{AE}{AF}=\frac{AB}{AC}\left(cmt\right)\)
\(\Rightarrow\Delta AEF~ABC\left(g.g\right)\)
b, Tương tự ta có :
ΔDBF ∼ ΔABC ( c.g.c )
Do đó : ΔAEF ∼ ΔDBF
(sai thôi nhé ^^)
Chúc bạn học tốt !
sai mẹ rồi còn đâu nữa