Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ∆ ABC là tam giác nhọn nên ba đường cao cắt nhau tại điểm H nằm trong tam giác ABC.
Vì ∆ ABC là tam giác nhọn nên ba đường cao cắt nhau tại điểm H nằm trong tam giác ABC.
Tứ giác BIHL nội tiếp.
Tứ giác CIHK nội tiếp.
Từ (1), (2) suy ra:
a: Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔBCK nội tiếp
BK là đường kính
Do đó: ΔBCK vuông tại C
=>CK//AH
Xét (O) có
ΔBAK nội tiếp
BK là đường kính
Do đó: ΔBAK vuông tại A
=>AK//CH
Xét tứ giác CHAK có
CH//AK
CK//AH
DO đó: CHAK là hình bình hành
a: A,E,D,B cùng thuộc (O)
=>AEDB nội tiếp
A,E,C,B cùng thuộc (O)
=>AECB nội tiếp
B,E,C,D cùng thuộc (O)
=>BECD nội tiếp
góc AHB=góc AKB=90 độ
=>AKHB nội tiếp
b: Đề sai rồi bạn
a: góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
b,c: M ở đâu vậy bạn?
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwj_htuJjaDNAhXFupQKHUPIDW4QFggvMAM&url=http%3A%2F%2Fdethi.violet.vn%2Fpresent%2Fshowprint%2Fentry_id%2F11589938&usg=AFQjCNFE3u1neBn3yDHoQDWVIpqC7BV7pg&sig2=owaRLEZ4pofYHq7hirfSxQ
Cứ vào đây sẽ có đáp án và hình vẽ
a)
xét tứ giác AEHF có :
AEH = 900 (BE là đường cao của B trên AC )
AFH = 900 (CF là dường cao của C trên AB )
ta có ; AEH + AFH = 1800 mà 2 góc này ở vị trí đối nhau
==> tứ giác AEHF nội tiếp
xét tứ AEDB có :
AEB = 900 (BE là dường cao của B trên AC )
ADB = 900 (AD là đường cao của A trên BD )
mà 2 góc này cùa nhìn cạnh AB dưới một góc vuông
==> tứ giác AEDB nội tiếp
câu b vì mình ko hiểu đường cao của đường tròn là gì :/
Vì ∆ ABC là tam giác nhọn nên ba đường cao cắt nhau tại điểm H nằm trong tam giác ABC.
Tứ giác AKHL có
Tứ giác AKHL nội tiếp.
Tứ giác BIHL có
Tứ giác BIHL nội tiếp.
Tứ giác CIHK có
Tứ giác CIHK nội tiếp.
Tứ giác ABIK có
K và I nhìn đoạn AB dưới một góc vuông nên tứ giác ABIK nội tiếp. Tứ giác BCKL có
K và L nhìn đoạn BC dưới một góc vuông nên tứ giác BCKL nội tiếp.
Tứ giác ACIL có
I và L nhìn đoạn AC dưới một góc vuông nên tứ giác ACIL nội tiếp.