Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
MK KO GỬI ĐC ẢNH CÁI HÌNH LÊN THÔNG CẢM
A)
xét \(\Delta AMB\) VÀ \(\Delta DMC\) CÓ:
\(MB=MC\)(DO M LÀ TRUNG ĐIỂM CỦA BC)
\(AM=MD\left(GT\right)\)
\(\widehat{AMB}=\widehat{DMC}\)(2 GÓC ĐỐI ĐỈNH)
\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c.g.c\right)\left(đpcm\right)\)
đợi chút,mk làm phần b,c sau
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
1, Xét △ABC vuông tại A có: AC2 + AB2 = BC2 (định lý Pytago)
=> AC2 = BC2 - AB2 = 102 - 82 = 36
=> AC = 6 (cm)
2. Xét △AMB và △DMC
Có: AM = MD (gt)
AMB = DMC (2 góc đối đỉnh)
MB = MC (gt)
=> △AMB = △DMC (c.g.c)
=> MAB = MDC (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AB // DC (dhnb)
Mà AB ⊥ AC
=> CD ⊥ AC (từ vuông góc đến song song)
3. Xét △AHC và △EHC cùng vuông tại H
Có: CH là cạnh chung
AH = EH (gt)
=> △AHC = △EHC (2cgv)
=> AC = EC (2 cạnh tương ứng)
=> △ACE cân tại C
4, Xét △CAM và △BDM
Có: AM = DM (gt)
CMA = BMD (2 góc đối đỉnh)
CM = MB (gt)
=> △CAM = △BDM (c.g.c)
=> AC = BD (2 cạnh tương ứng)
Mà AC = CE (cmt)
=> BD = CE
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
\(a,\left\{{}\begin{matrix}AM=MD\\BM=MC\\\widehat{AMB}=\widehat{CMD}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABM}=\widehat{DCM}\\ \text{Mà 2 góc này ở vị trí so le trong nên }AB\text{//}CD\\ b,AH\bot BC;DK\bot BC\Rightarrow AH\text{//}DK\\ \left\{{}\begin{matrix}AM=MD\\\widehat{AHM}=\widehat{DKM}=90^0\\\widehat{AMH}=\widehat{KMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AHM=\Delta DKM\left(c.g.c\right)\\ \Rightarrow AH=DK\)
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath
c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE
=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE
=> \(\Delta\)ABE cân tại B
=> AB = BE
d) Ta có: SN vuông AH ; BC vuông AH
=> SN //BC
=> NK //MC
=> ^KNI = ^MCI
mặt khác có: NK = MC ; IN = IC ( gt)
=> \(\Delta\)NIK = \(\Delta\)CIM
=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o
=> ^CIM + ^KIC = 180o
=> ^KIM = 180o
=>M; I ; K thẳng hàng