Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do BM là tiếp tuyến của đường tròn nên
Xét đường tròn (O) có AD là một dây cung. Lại có E là trung điểm AD nên theo tính chất của đường kính và dây cung, ta có hay .
Xét tứ giác OEBM có , chúng lại là hai góc kề nhau nên OEBM là tứ giác nội tiếp.
Cho tam giác có ba góc nhọn nội tiếp đường tròn tâm . Hai tiếp tuyến tại và cắt nhau tại . cắt đường tròn tại điểm thứ hai . Gọi là trung điểm đoạn . Chứng minh là tứ giác nội tiếp.
theo bai ta co là trung điểm đoạn
a: góc OBE+góc OCE=180 độ
=>OBEC nội tiếp
b: Xét ΔEBD và ΔEAB có
góc EBD=góc EAB
góc BED chung
=>ΔEBD đồng dạng với ΔEAB
=>EB/EA=ED/EB
=>EB^2=EA*ED
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a: Xét tứ giác OBDC có \(\widehat{OBD}+\widehat{OCD}=90^0+90^0=180^0\)
nên OBDC là tứ giác nội tiếp
=>\(\widehat{DOC}=\widehat{DBC}\left(1\right)\)
Xét (O) có
\(\widehat{DBC}\) là góc tạo bởi tiếp tuyến BD và dây cung BC
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{DBC}=\widehat{BAC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{DOC}=\widehat{BAC}\)
b: Ta có: DI//AB
=>\(\widehat{CID}=\widehat{CAB}\)(hai góc đồng vị)
mà \(\widehat{CAB}=\widehat{DBC}\)
và \(\widehat{DBC}=\widehat{DOC}\)
nên \(\widehat{CID}=\widehat{COD}\)
=>CIOD là tứ giác nội tiếp
c: ta có: CIOD là tứ giác nội tiếp
=>\(\widehat{OID}=\widehat{OCD}=90^0\)
=>OI\(\perp\)EF tại I
Ta có: ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
=>IE=IF
a, O B M ^ = O E M ^ = 90 0
=> Tứ giác OEBM nội tiếp
b, Chứng minh được: ∆ABM:∆BDM (g.g) => M B 2 = M A . M B
c, DOBC cân tại O có OM vừa là trung trực vừa là phân giác
=> M O C ^ = 1 2 B O C ^ = 1 2 s đ B C ⏜
Mà B F C ^ = 1 2 B C ⏜ => M O C ^ = B F C ^
d, O E M ^ = O C M ^ = 90 0 => Tứ giác EOCM nội tiếp
=> M E C ^ = M O C ^ = B F C ^ mà 2 góc ở vị trí đồng vị => FB//AM
Tắt quá