K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

A B C N D F I K O

a) +) Ta có: IB, IK là 2 tiếp tuyến kẻ từ I

=> IO là tia phân giác \(\widehat{BIK}\)=->\(\widehat{BIO}=\frac{1}{2}\widehat{KIB}\)(1)

Tương tự: \(\widehat{IBO}=\frac{1}{2}\widehat{IBC}\)(2)

+) ND cùng vuông góc với IK và BC 

=> IK//BC

=> \(\widehat{KIB}+\widehat{IBC}=180^o\)(3)

Từ (1), (2), (3)

=> \(\widehat{IBO}+\widehat{BIO}=90^o\)=> \(\widehat{IBO}=90^o\)

+) Xét 2 tam giác vuông INO và ODB có:

\(\widehat{ION}=\widehat{OBD}\)( cùng phụ với góc BOD)

=> \(\Delta INO~\Delta ODB\)

=> \(\frac{IN}{OD}=\frac{ON}{BD}\)=> \(IN.BD=R^2\)( với R là bán kính đường tròn (O)) (4)

Tương tự ta cũng chứng minh được: \(NK.DC=R^2\)(5)

(4), (5)=> \(IN.BD=NK.DC\Rightarrow\frac{IN}{NK}=\frac{DC}{BD}\)(6)

b) IK//BC. Theo định lí Thaslet ta có:

\(\frac{IN}{BE}=\frac{NK}{EC}\left(=\frac{AN}{AE}\right)\Rightarrow\frac{IN}{NK}=\frac{BE}{EC}\)(7)

(6),(7)=> \(\frac{DC}{DB}=\frac{BE}{EC}\Rightarrow\frac{BC-BD}{DB}=\frac{BC-EC}{CE}\Rightarrow\frac{BC}{BD}-1=\frac{BC}{CE}-1\Rightarrow\frac{BC}{BD}=\frac{BC}{CE}\Rightarrow BD=CE\)

17 tháng 8 2019

A B C M O D E F I P Q T

1) Ta có 4 điểm B,O,C,M cùng thuộc đường tròn đường kính OM (^MBO = ^MCO = 900) (1)

Do MI // AB và MB tiếp xúc với (O) tại B nên ^CIM = ^CAB = ^CBM

=> 4 điểm B,I,C,M cùng thuộc một đường tròn (2)

Từ (1) và (2) suy ra 5 điểm M,B,O,I,C cùng thuộc một đường tròn (đpcm).

2) Theo câu a thì M,B,I,C cùng thuộc (OM), có BC giao IM tại F => FI.FM = FB.FC

Đường tròn (O) có dây BC giao DE tại F nên FB.FC = FD.FE

Do vậy FI.FM = FD.FE => \(\frac{FI}{FE}=\frac{FD}{FM}\) (đpcm).

3) Điểm I thuộc đường tròn (OM) => ^OIM = 900 hay ^QIM = 900

Dễ thấy FQ.FT = FB.FC = FI.FM, suy ra tứ giác QMTI nội tiếp => ^QTM = ^QIM = 900

=> \(\Delta\)QTM vuông tại T. Theo ĐL Pytagoras: \(TQ^2+TM^2=QM^2\)

Vậy thì \(\frac{TQ^2+TM^2}{MQ^2}=1.\)