K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

\(\widehat{HAB}\) chung

Do đó: ΔAHB~ΔAKC

=>\(\dfrac{AB}{AC}=\dfrac{HB}{KC}\)

=>\(AB\cdot KC=HB\cdot AC\)

b: ΔAHB~ΔAKC

=>\(\dfrac{AH}{AK}=\dfrac{AB}{AC}\)

=>\(\dfrac{AH}{AB}=\dfrac{AK}{AC}\left(1\right)\)

Xét ΔAHB có AM là phân giác

nên \(\dfrac{AH}{AB}=\dfrac{MH}{MB}\left(2\right)\)

Xét ΔAKC có AN là phân giác

nên \(\dfrac{AK}{AC}=\dfrac{KN}{NC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{MH}{MB}=\dfrac{NK}{NC}\)

=>\(MH\cdot NC=NK\cdot MB\)

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

=>BA/BC=BH/BA

=>BA^2=BH*BC

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: Xét ΔCAM có

CK,AH là đường cao

CK cắt AH tại I

=>I là trực tâm

=>MI vuông góc AC

=>MI//AB

Xét ΔHAB có

M là trung điểm của HB

MI//AB

=>I là trung điểm của HA

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: Xét ΔCAM có

CK,AH là đường cao

CK cắt AH tại I

=>I là trực tâm

=>MI vuông góc AC

=>MI//AB

Xét ΔHAB có 

M là trung điểm của HB

MI//AB

=>I là trung điểm của AH

=>IA=IH

26 tháng 6 2021

Bạn tự vẽ hình nhé hình này rất dễ thôi :v

a)Xét tam giác cân ABC có:AM là trung tuyến

`=>` AM là đường cao

`=>AM bot BC`

Xét tam giác ABM và tam giác ACM có:

`AM` chung

`hat{AMB}=hat{AMC}=90^o(CMT)`

`BM=MC`(do m là trung điểm)

`=>Delta ABM=Delta ACM(cgc)`

`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:

`BM=CM`(M là trung điểm)

`hat{ABC}=hat{ACB}`(do tam giác ABC cân)

`=>Delta BHM=Delta CKM`(ch-gn)

`=>BH=CK`

a: Xét ΔACI vuông tại C và ΔAHB vuông tại H có

góc CAI=góc HAB

=>ΔACI đồng dạng với ΔAHB

b: Xét ΔHBI và ΔHAB có

góc HBI=góc HAB

góc H chung

=>ΔHBI đồng dạng với ΔHAB

=>HB/HA=HI/HB

=>HB^2=HA*HI

c: CD/DA=CK/KA=CB/CA

NV
8 tháng 4 2023

a.

Xét hai tam giác AIC và ABH có:

\(\left\{{}\begin{matrix}\widehat{CAI}=\widehat{BAH}\left(\text{Ax là phân giác}\right)\\\widehat{ACI}=\widehat{AHB}=90^0\left(gt\right)\end{matrix}\right.\) 

\(\Rightarrow\Delta AIC\sim\Delta ABH\left(g.g\right)\) (1)

b.

Xét hai tam giác AIC và BIH có:

\(\left\{{}\begin{matrix}\widehat{AIC}=\widehat{BIH}\left(\text{đối đỉnh}\right)\\\widehat{ACI}=\widehat{BHI}=90^0\end{matrix}\right.\)  \(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\) (2)

(1);(2) \(\Rightarrow\Delta ABH\sim\Delta BIH\)

\(\Rightarrow\dfrac{AH}{BH}=\dfrac{BH}{IH}\Rightarrow BH^2=HI.HA\)

c.

Áp dụng định lý phân giác trong tam giác ACK: \(\dfrac{CD}{DA}=\dfrac{CK}{AK}\) (3)

Xét hai tam giác ABC và ACK có:

\(\left\{{}\begin{matrix}\widehat{CAB}\text{ chung}\\\widehat{BCA}=\widehat{CKA}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\Delta ABC\sim\Delta ACK\left(g.g\right)\)

\(\Rightarrow\dfrac{BC}{CK}=\dfrac{AC}{AK}\Rightarrow\dfrac{BC}{AC}=\dfrac{CK}{AK}\) (4)

(3);(4) \(\Rightarrow\dfrac{CD}{DA}=\dfrac{BC}{AC}\)

29 tháng 7 2018

a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)

\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)

Xét \(\Delta BHD\)và \(\Delta CKD\) có: 

                         \(\widehat{BHD}=\widehat{CKD}=90^0\)

                          \(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)

Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)

b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:

                     \(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)

                       \(\widehat{AHB}=\widehat{AKC}=90^0\)

Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)

Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay  \(AB.AK=AC.AH\)

C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\) 

\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)

Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)

d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.

Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I

\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)

\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)

Suy ra: \(\widehat{F}=\widehat{IEC}\)

Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)

Nên \(\widehat{FBO}=\widehat{ICE}\)

Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)

Chúc bạn học tốt.