Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA
=>BA^2=BH*BC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: Xét ΔCAM có
CK,AH là đường cao
CK cắt AH tại I
=>I là trực tâm
=>MI vuông góc AC
=>MI//AB
Xét ΔHAB có
M là trung điểm của HB
MI//AB
=>I là trung điểm của HA
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: Xét ΔCAM có
CK,AH là đường cao
CK cắt AH tại I
=>I là trực tâm
=>MI vuông góc AC
=>MI//AB
Xét ΔHAB có
M là trung điểm của HB
MI//AB
=>I là trung điểm của AH
=>IA=IH
Bạn tự vẽ hình nhé hình này rất dễ thôi :v
a)Xét tam giác cân ABC có:AM là trung tuyến
`=>` AM là đường cao
`=>AM bot BC`
Xét tam giác ABM và tam giác ACM có:
`AM` chung
`hat{AMB}=hat{AMC}=90^o(CMT)`
`BM=MC`(do m là trung điểm)
`=>Delta ABM=Delta ACM(cgc)`
`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:
`BM=CM`(M là trung điểm)
`hat{ABC}=hat{ACB}`(do tam giác ABC cân)
`=>Delta BHM=Delta CKM`(ch-gn)
`=>BH=CK`
a: Xét ΔACI vuông tại C và ΔAHB vuông tại H có
góc CAI=góc HAB
=>ΔACI đồng dạng với ΔAHB
b: Xét ΔHBI và ΔHAB có
góc HBI=góc HAB
góc H chung
=>ΔHBI đồng dạng với ΔHAB
=>HB/HA=HI/HB
=>HB^2=HA*HI
c: CD/DA=CK/KA=CB/CA
a.
Xét hai tam giác AIC và ABH có:
\(\left\{{}\begin{matrix}\widehat{CAI}=\widehat{BAH}\left(\text{Ax là phân giác}\right)\\\widehat{ACI}=\widehat{AHB}=90^0\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AIC\sim\Delta ABH\left(g.g\right)\) (1)
b.
Xét hai tam giác AIC và BIH có:
\(\left\{{}\begin{matrix}\widehat{AIC}=\widehat{BIH}\left(\text{đối đỉnh}\right)\\\widehat{ACI}=\widehat{BHI}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\) (2)
(1);(2) \(\Rightarrow\Delta ABH\sim\Delta BIH\)
\(\Rightarrow\dfrac{AH}{BH}=\dfrac{BH}{IH}\Rightarrow BH^2=HI.HA\)
c.
Áp dụng định lý phân giác trong tam giác ACK: \(\dfrac{CD}{DA}=\dfrac{CK}{AK}\) (3)
Xét hai tam giác ABC và ACK có:
\(\left\{{}\begin{matrix}\widehat{CAB}\text{ chung}\\\widehat{BCA}=\widehat{CKA}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\Delta ABC\sim\Delta ACK\left(g.g\right)\)
\(\Rightarrow\dfrac{BC}{CK}=\dfrac{AC}{AK}\Rightarrow\dfrac{BC}{AC}=\dfrac{CK}{AK}\) (4)
(3);(4) \(\Rightarrow\dfrac{CD}{DA}=\dfrac{BC}{AC}\)
a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)
\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)
Xét \(\Delta BHD\)và \(\Delta CKD\) có:
\(\widehat{BHD}=\widehat{CKD}=90^0\)
\(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)
Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)
b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:
\(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)
\(\widehat{AHB}=\widehat{AKC}=90^0\)
Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)
Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay \(AB.AK=AC.AH\)
C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\)
\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)
Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)
d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.
Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I
\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)
\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)
Suy ra: \(\widehat{F}=\widehat{IEC}\)
Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)
Nên \(\widehat{FBO}=\widehat{ICE}\)
Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)
Chúc bạn học tốt.
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
\(\widehat{HAB}\) chung
Do đó: ΔAHB~ΔAKC
=>\(\dfrac{AB}{AC}=\dfrac{HB}{KC}\)
=>\(AB\cdot KC=HB\cdot AC\)
b: ΔAHB~ΔAKC
=>\(\dfrac{AH}{AK}=\dfrac{AB}{AC}\)
=>\(\dfrac{AH}{AB}=\dfrac{AK}{AC}\left(1\right)\)
Xét ΔAHB có AM là phân giác
nên \(\dfrac{AH}{AB}=\dfrac{MH}{MB}\left(2\right)\)
Xét ΔAKC có AN là phân giác
nên \(\dfrac{AK}{AC}=\dfrac{KN}{NC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{MH}{MB}=\dfrac{NK}{NC}\)
=>\(MH\cdot NC=NK\cdot MB\)