\(\in\) AC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) △ AKB ~ △AIC (g - g) ( ˆK=ˆI=900;K^=I^=900;ˆAA^ chung) (3)

⇒ ˆACI=ˆABKACI^=ABK^

⇒ 900−ˆACI=900−ˆABK900−ACI^=900−ABK^

⇒ ˆHCD=ˆHBDHCD^=HBD^ (1)

xét tứ giác AKHI có

ˆKHI=3600−ˆA−ˆHKA−ˆHIA=1800−ˆAKHI^=3600−A^−HKA−^HIA^=1800−A^

tương tự ˆD=1800−ˆAD^=1800−A^

⇒ ˆKHI=ˆDKHI^=D^ (2)

từ (1) và (2) ⇒ BHCD là hình bình hành

b) từ (3) ⇒ AIAK=ACABAIAK=ACAB (4)

⇒ AI.AB = AK.AC

c) xét △AKI và △ABC có

ˆAA^ chung; (4)

⇒ △AKI ~ △ABC (c-g-c)

d) gọi K là giao của DH và BC

vì A,D,H thăng hàng và H là trực tâm nên AD ⊥ BC hay HD ⊥ BC

⇒ BDCH là hình thoi

⇒ KC = KB

⇒ △ ABK = △ ACK (c-g-c)

⇒ △ ABC cân tại A

vậy △ ABC cân tại A thì DH đi qua A và BHCD là hình thoi

nó bị lỗi mk gửi lại 

a) △ AKB ~ △AIC (g - g) ( ˆK=ˆI=900,ˆAA^ chung) (3)

⇒ ˆACI=ˆABK

⇒ 900−ˆACI=900−ˆABK

⇒ ˆHCD=ˆHBD (1)

xét tứ giác AKHI có

ˆKHI=3600−ˆA−ˆHKA−ˆHIA=1800−ˆA

tương tự ˆD=1800−ˆAD^=1800−A^

⇒ ˆKHI=ˆD (2)

từ (1) và (2) ⇒ BHCD là hình bình hành

b) từ (3) ⇒ AI/AK=AC/AB (4)

⇒ AI.AB = AK.AC

c) xét △AKI và △ABC có

ˆAA^ chung; (4)

⇒ △AKI ~ △ABC (c-g-c)

d) gọi K là giao của DH và BC

vì A,D,H thăng hàng và H là trực tâm nên AD ⊥ BC hay HD ⊥ BC

⇒ BDCH là hình thoi

⇒ KC = KB

⇒ △ ABK = △ ACK (c-g-c)

⇒ △ ABC cân tại A

vậy △ ABC cân tại A thì DH đi qua A và BHCD là hình thoi

21 tháng 8 2019

giup mình với mai đi hc rồi

Bài 1: cho \(\Delta\)ABC vuông tại A, có AB=6cm, AC=8cm. vẽ đường cao AH a) tính BC b) Chứng minh \(\Delta\)ABC\(\sim\)\(\Delta\)AHB c) chứng minh AB2=BH.BC. tính BH,HC d) vẽ phân giác AD của góc A(D\(\in\)BC). tính DB Bài 2: cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH,AK a) chừng minh \(\Delta\)BDC\(\sim\)\(\Delta\)HBC b) chứng minh BC2=HC.DC c) chứng minh \(\Delta...
Đọc tiếp

Bài 1: cho \(\Delta\)ABC vuông tại A, có AB=6cm, AC=8cm. vẽ đường cao AH

a) tính BC

b) Chứng minh \(\Delta\)ABC\(\sim\)\(\Delta\)AHB

c) chứng minh AB2=BH.BC. tính BH,HC

d) vẽ phân giác AD của góc A(D\(\in\)BC). tính DB

Bài 2:

cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH,AK

a) chừng minh \(\Delta\)BDC\(\sim\)\(\Delta\)HBC

b) chứng minh BC2=HC.DC

c) chứng minh \(\Delta AKD\sim\Delta BHC\)

d)cho BC=15cm, DC=25cm. Tính HC, HD

e)tính diện tích hình thang ABCD

Bài 3:

cho\(\Delta\)ABC các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. gội M là trung điểm của BC

a) chứng minh \(\Delta ADB\sim\Delta AEC\)

b)chứng minh HE.HC=HD.HB

c) chứng minh H,K,M thẳng hàng

d)\(\Delta ABC\) phải có điều kiện nào thì tứ giác BHCK là hình thoi? hình chữ nhật?

1

Bài 1:

a: BC=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC đồg dạg với ΔHBA

c: Xét ΔaBC vuông tại A có AHlà đường cao

nên \(AB^2=BH\cdot BC\)

=>BH=36/10=3,6(cm)
=>CH=6,4cm

d: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

hay BD/3=CD/4

Áp dụng tính chất của dãy tỉ só bằng nhau ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm

2 tháng 2 2021

Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).a. C... - H

ctv thảo (giỏi toán của chta bên h :v) đã làm rồi. bạn nào cần thì click vào đường link xanh bên trên nhé 

2 tháng 2 2021

Gọi I là giao điểm của DE và AH.

Câu a) Ta dễ dàng chứng minh được ADHE là hình chữ nhật, sử dụng tính chất hình chữ nhật để suy ra \(\widehat{ADE}=\widehat{DAH}\)

Mà \(\widehat{DAH}=\widehat{C}\) (cùng phụ với góc ABC) nên suy ra \(\widehat{ADE}=\widehat{C}\)

Từ đó dễ dàng chứng minh được tam giác AED đồng dạng với tam giác ABC theo trường hợp góc - góc.

Câu b) Chắc là phải sử dụng lớp 9 sẽ nhanh hơn. Các bạn thử tìm thêm cách khác nhé

Chứng minh tứ giác ABNM nội tiếp suy ra \(\widehat{ANB}=\widehat{AMB}\)

Dễ dàng chứng minh được \(\widehat{AMB}=\widehat{ABC}=\widehat{AED}\)

Suy ra: \(\widehat{ANB}=\widehat{AED}\)và hai góc này ở vị trí đồng vị, suy ra: DE //BN

Câu 3. Sử dụng tỉ số  đồng dạng hợp lí rồi suy ra kết quả

Ta dễ dàng chứng minh được: \(\Delta BDH\)\(\Delta BAC\).và tính được \(BD=\frac{DH.AB}{AC}\)

Chứng minh được: \(\Delta CEH\)\(\Delta CAB\).và tính được \(CE=\frac{EH.AC}{AB}\)

Chứng minh được: \(\Delta DHE\)\(\Delta BAC\).và suy ra được \(\frac{DH}{EH}=\frac{AB}{AC}\)

Suy ra: \(\frac{BD}{CE}=\frac{DH.AB}{AC}:\frac{EH.AC}{AB}=\frac{AB^2.DH}{AC^2.EH}=\frac{AB^2.AB}{AC^2.AC}\)

Vậy \(\frac{BD}{CE}=\frac{AB^3}{AC^3}\)