Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nha bạn
a, có \(\hept{\begin{cases}S_{HBC}=\frac{BC\cdot HA'}{2}\\S_{ABC}=\frac{BC\cdot AA'}{2}\end{cases}}\) \(\Rightarrow\frac{S_{HBC}}{S_{ABC}}=\frac{BC\cdot HA'}{2}\div\frac{BC\cdot AA'}{2}=\frac{HA'}{AA'}\)
có tương tự ta có \(\frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}\) và \(\frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}\)
\(\Rightarrow\frac{S_{HAC}+S_{HBC}+S_{HAB}}{S_{ABC}}=\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
để mjnh làm tiếp câu b
b, IN là pg của \(\widehat{AIB}\) (gt)
\(\Rightarrow\frac{NB}{IB}=\frac{NA}{AI}\) (tc)
\(\Rightarrow NB\cdot AI=IB\cdot NA\)
\(\Rightarrow NB\cdot AI\cdot CM=IB\cdot AN\cdot CM\left(1\right)\)
IM là pg của \(\widehat{AIC}\) (gt)
\(\Rightarrow\frac{AM}{AI}=\frac{MC}{IC}\)
\(\Rightarrow AM\cdot IC=AI\cdot CM\)
\(\Rightarrow AM\cdot IC\cdot NB=AI\cdot CM\cdot NB\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow AN\cdot BI\cdot CM=BN\cdot CI\cdot AM\)
Bạn tự vẽ hình nhé!
À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá
1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .
Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC
=> CH là đường cao thứ 3 của \(\Delta\) ABC
=> CH \(\perp\) AB (1)
mà BD \(\perp\) AB (gt) => CH//BD
Có BH \(\perp\) AC (BE là đường cao)
CD \(\perp\) AC
=> BH//CD (2)
Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành
2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM
Có O là trung điểm của AD hay OA = OD
Xét \(\Delta\) AHD có:
HM = DM
OA = OD
=> OM là đường trung bình của \(\Delta\) AHD
=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM
XONG !!
-Sửa đề: Đoạn BC không đổi.
-BH cắt AC tại D.
-Xét △ABC có:
H là trực tâm, AK là đường cao.
\(\Rightarrow\)H∈AK, BH là đường cao.
Mà BH cắt AC tại D (gt)
\(\Rightarrow\)BH⊥AC tại D.
-Xét △HBK và △HAD có:
\(\widehat{BKH}=\widehat{HDA}=90^0\)
\(\widehat{BHK}=\widehat{AHD}\) (đối đỉnh)
\(\Rightarrow\)△HBK∼△HAD (g-g).
-Xét △HBK và △CAK có:
\(\widehat{HKB}=\widehat{CKA}=90^0\)
\(\widehat{HBK}=\widehat{KAC}\)(△HBK∼△HAD)
\(\Rightarrow\)△HBK∼△CAK (g-g).
\(\Rightarrow\dfrac{KH}{KC}=\dfrac{KB}{KA}\) (tỉ số đồng dạng)
\(\Rightarrow KH.KA=KB.KC\)
-Gọi M là trung điểm BC \(\Rightarrow MB=MC=\dfrac{BC}{2}\)
\(KH.KA\le\dfrac{BC^2}{4}\)
\(\Leftrightarrow KB.KC\le\left(\dfrac{BC}{2}\right)^2\)
\(\Leftrightarrow\left(MB-MK\right)\left(MC+MK\right)\le MB^2\) (do cách dựng hình)
\(\Leftrightarrow\left(MB-MK\right)\left(MB+MK\right)\le MB^2\)
\(\Leftrightarrow MB^2-MK^2\le MB^2\) (luôn đúng do MK>0)
-Vậy \(KH.KA\le\dfrac{BC^2}{4}\) . Dấu bằng xảy ra khi △ABC cân tại A.