Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD vuông tại D và ΔCHD vuông tại D có
góc BAD=góc HCD
=>ΔABD đồng dạng vớiΔCHD
1/ Ttứ giác BHCE có HE giao CD tại trung điểm D của cả 2 đoạn
---> Hình bình hành
2/ Vì H là trực tâm tam giác ABC
--> HC vuông góc AB
mà HC // BE do t/c cạnh đối của hình bình hành
---> đpcm
3/ Nối ID
Chứng minh được ID là đường trung bình tam giác AHE
---> ID vuông góc BC tại D, D là trung điểm BC
Gọi K là trung điểm AC
Chứng minh được IK lả đường trung bình của tam giác ACE
---> IK // CE
suy ra IK vuông góc AC tại trung điểm K của AC
Vậy.....
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: Xet ΔHEB vuôg tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
c: ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
-Sửa đề: Đoạn BC không đổi.
-BH cắt AC tại D.
-Xét △ABC có:
H là trực tâm, AK là đường cao.
\(\Rightarrow\)H∈AK, BH là đường cao.
Mà BH cắt AC tại D (gt)
\(\Rightarrow\)BH⊥AC tại D.
-Xét △HBK và △HAD có:
\(\widehat{BKH}=\widehat{HDA}=90^0\)
\(\widehat{BHK}=\widehat{AHD}\) (đối đỉnh)
\(\Rightarrow\)△HBK∼△HAD (g-g).
-Xét △HBK và △CAK có:
\(\widehat{HKB}=\widehat{CKA}=90^0\)
\(\widehat{HBK}=\widehat{KAC}\)(△HBK∼△HAD)
\(\Rightarrow\)△HBK∼△CAK (g-g).
\(\Rightarrow\dfrac{KH}{KC}=\dfrac{KB}{KA}\) (tỉ số đồng dạng)
\(\Rightarrow KH.KA=KB.KC\)
-Gọi M là trung điểm BC \(\Rightarrow MB=MC=\dfrac{BC}{2}\)
\(KH.KA\le\dfrac{BC^2}{4}\)
\(\Leftrightarrow KB.KC\le\left(\dfrac{BC}{2}\right)^2\)
\(\Leftrightarrow\left(MB-MK\right)\left(MC+MK\right)\le MB^2\) (do cách dựng hình)
\(\Leftrightarrow\left(MB-MK\right)\left(MB+MK\right)\le MB^2\)
\(\Leftrightarrow MB^2-MK^2\le MB^2\) (luôn đúng do MK>0)
-Vậy \(KH.KA\le\dfrac{BC^2}{4}\) . Dấu bằng xảy ra khi △ABC cân tại A.