K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tại C

b: \(\widehat{BAH}+\widehat{ABC}=90^0\)

\(\widehat{OAC}+\widehat{AMC}=90^0\)

mà \(\widehat{ABC}=\widehat{AMC}\left(=\dfrac{sđ\stackrel\frown{AC}}{2}\right)\)

nên \(\widehat{BAH}=\widehat{OAC}=\widehat{OCA}\)

26 tháng 1 2022

Bạn chưa tính góc AMC kìa  :))))

 

a: Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tại C

hay \(\widehat{ACM}=90^0\)

b: \(\widehat{OAC}+\widehat{AMC}=90^0\)

\(\widehat{BAH}+\widehat{ABC}=90^0\)

mà \(\widehat{AMC}=\widehat{ABC}\)

nên \(\widehat{OAC}=\widehat{BAH}=\widehat{OCA}\)

26 tháng 1 2022

Xét \(\Delta OAC\) có : \(OA=OC\left(=R\right)\left(gt\right)\)

\(\Rightarrow\Delta OAC\) cân tại O

\(\Rightarrow\widehat{OAC}=\widehat{ACO\left(2\right)}\)

Từ (1) và (2) \(\Rightarrow\widehat{BAH=\widehat{OCA}}\)

c) Xét \(\left(O\right)\), có : \(\widehat{ANM=90^0}\)

\(\Rightarrow MN\pm AN\)

\(MàBC\pm AN\left(gt\right)\) 

\(\Rightarrow MN=BC\)

Xét tam giác \(BNMC\)\(cóMN=BC\left(cmt\right)\)

Tam giác BNMC là hình thang

Mà bốn đỉnh B,M,N,C

Vậy BMNC là tam giác cân

7 tháng 5 2019

a, Ta có  A C M ^ = 90 0  (góc nội tiếp)

b, Ta có ∆ABH:∆AMC(g.g)

=>  B A H ^ = O A C ^ ; O C A ^ = O A C ^

=>  B A H ^ = O C A ^

c,  A N M ^ = 90 0

=> MNBC là hình thang

=> BC//MN => sđ B N ⏜ = sđ C M ⏜

=>  C B N ^ = B C M ^  nên BCMN là hình thang cân

13 tháng 12 2021

\(a,\widehat{ACM}=90^o\) (góc nội tiếp chắn nửa đường tròn)

\(b,\widehat{ABC}=\widehat{AMC}=\dfrac{1}{2}sđ\mathop{AC}\limits^{\displaystyle\frown}\)

Mà \(\widehat{ABH}+\widehat{ABC}=\widehat{OAC}+\widehat{AMC}=90^0\)

Do đó \(\widehat{ABH}=\widehat{OAC}\)

\(c,\widehat{ANM}=90^0\) (góc nội tiếp chắn nửa đường tròn)

Do đó \(MN\bot AN\)

Mà \(BC\bot AN \Rightarrow BC//MN\)

Do đó BCMN là hình thang

Mà \(B,M,N,C\in (O)\)

Vậy BCMN là hình thang cân

23 tháng 1 2021

a,  ABDC nội tiếp

=> ˆBAH = ˆBCD

    ACED nội tiếp

=> OAC^ = CDE^

Lại có ΔDEA nội tiếp đường tròn đường kínhAE

=> DE ⊥ AD

mà AD ⊥ BC

=> DE // BC=>BCD^ =CDE^ ( so le trong)

=>BAH^ = OAC^

b, DE // BC=> BDEC là hình thang (*)

Lại có:

DBC^ = DAC^ ( BDAC nội tiếp) (1)

BCE^EAB^ ( ABEC nội tiếp) (2)

Lại có: BAH^ = OAC^

=> BAH^ + HAO^ = OAC^ + ˆHAO

=> EAB^ = DAC^ (3)

Từ (1) (2) (3) => DBC^BCE^ (**)

từ (*) và (**) => BCED là hình thang cân

 

1 tháng 3 2016

a)Gọi I là trung điểm của tam giác BC

Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC

=>IE=ID=IB=IC

=> tứ giác BCDE nội tiếp.  tâm đường tròn là I

b)AFK=90 ( dg cao thứ 3)

ACK=90 (chắn nữa dg tròn)

=>AFB=ACK

c)BD vg góc với AC

ACK=90 =>CK vg góc với AC

=>CK song song với BH

tuong tu CH song song voi BK

=>BHCK là hinh binh hanh

*vì I là trung điểm của BC 

=>I cung la trung diem cua HK

=>H,I,K thang hang

4 tháng 3 2021

mọi người giúp em với ạ em cần gấp

 

4 tháng 3 2021

.