Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Mình đã trình bày tại đây:
Câu hỏi của Tân Nhỏ - Toán lớp 9 | Học trực tuyến
b)
Ta thấy \(\sin A=\frac{BK}{AB}\) \(\Rightarrow BK=AB\sin A\)
\(\Rightarrow A_{ABC}=\frac{BK.AC}{2}=\frac{AB.\sin A.AC}{2}=\frac{\sin A.AB.AC}{2}\)
Hoàn toàn tương tự: \(S_{AIK}=\frac{\sin A.AI.AK}{2}\)
Do đó:
\(\frac{S_{AIK}}{S_{ABC}}=\frac{\sin A.AI.AK}{2}:\frac{\sin A.AB.AC}{2}=\frac{AI}{AC}.\frac{AK}{AB}\)
\(=\cos \widehat{IAC}.\cos \widehat{BAK}=\cos A.\cos A=\cos 60.\cos 60=\frac{1}{4}\)
\(\Rightarrow S_{AIK}=\frac{S_{ABC}}{4}=\frac{160}{4}=40(cm^2)\)
Lời giải:
Theo công thức lượng giác, ta có:
Xét tam giác $AIC$ vuông tại $I$:\(\cos A=\frac{AI}{AC}\)
Xét tam giác $ABH$ vuông tại $H$: \(\cos B=\frac{BH}{AB}\)
Xét tam giác $BKC$ vuông tại $K$: \(\cos C=\frac{CK}{CB}\)
Từ những điều trên suy ra:
\(\cos A.\cos B.\cos C=\frac{AI}{AC}.\frac{BH}{AB}.\frac{CK}{CB}\)
\(\Rightarrow AI.BH.CK=AB.BC.AC.\cos A.\cos B.\cos C\) (đpcm)
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=8^2+6^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
b: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)
=>\(sinC=\dfrac{8}{10}=\dfrac{4}{5}\)
Xét ΔABC vuông tại A có \(\widehat{B}+\widehat{C}=90^0\)
=>\(cosB=sinC=\dfrac{4}{5}\)
c: Ta có: ΔABC vuông tại A
=>\(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot BC=CA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{8^2}{10}=6,4\left(cm\right)\\CH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)