Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
Do đo: ΔBAD đồng dạng với ΔCAE
Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)
b: Xét ΔAED và ΔACB có
AE/AC=AD/AB
góc BAC chung
Do đó:ΔAED đồng dạng với ΔACB

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\hat{HBA}\) chung
Do đó: ΔHBA~ΔABC
b: Ta có: CD//AB
=>\(\hat{CDH}=\hat{HAB}\) (hai góc so le trong)
mà \(\hat{HAB}=\hat{C}\left(=90^0-\hat{CAH}\right)\)
nên \(\hat{CDA}=\hat{ACB}\)
Ta có: CD//AB
AB⊥CA
Do đó: CD⊥CA
Xét ΔCDA vuông tại C và ΔACB vuông tại A có
\(\hat{CDA}=\hat{ACB}\)
Do đó: ΔCDA~ΔACB
=>\(\frac{CD}{AC}=\frac{CA}{AB}\)
=>\(AB\cdot CD=AC^2\)
c: ΔCHD vuông tại H
mà HK là đường trung tuyến
nên KH=KD
=>ΔKHD cân tại K
ΔHAB vuông tại H
mà HI là đường trung tuyến
nên IA=IH
=>ΔIAH cân tại I
Ta có: \(\hat{IHA}=\hat{IAH}\) (ΔIAH cân tại I)
\(\hat{KHD}=\hat{KDH}\) (ΔKDH cân tại K)
mà \(\hat{KDH}=\hat{HAI}\) (hai góc so le trong, CD//AB)
nên \(\hat{KHD}=\hat{AHI}\)
mà \(\hat{AHI}+\hat{IHD}=180^0\) (hai góc kề bù)
nên \(\hat{KHD}+\hat{IHD}=180^0\)
=>K,H,I thẳng hàng