Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔDBC có CM/CB=CH/CD
nên HM//BD
=>BD vuông góc HE
Xét ΔHBD có
HE,BE là đường cao
HE cắt BE tại E
=>E là trực tâm
=>DE vuông góc BH
a) Đề sai nha bạn (Phải là cm E là trực tâm của \(\Delta\)BHD)
Xét \(\Delta\)BDC: M là trung điểm của BC, HC=HD => H là trung điểm của CD.
=> HM là đường trung bình của \(\Delta\)BDC => HM//BD.
Mà HM vuông góc với EF => BD cũng vuông góc với EF (Quan hệ song song vuông góc)
Xét \(\Delta\)BHD: BE vuông góc với DH; HE vuông góc với BD ( EF vuông góc BD cmt)
=> E là trực tâm của \(\Delta\)BHD (đpcm)
b) Nối D với E.
Ta có E là trực tâm \(\Delta\)BHD (cmt) => DE vuông góc BH
Mà AC vuông góc BH => DE//AC (Quan hệ song song vuông góc) hay DE//CF
=> ^EDH=^FCH (Cặp góc So le trong)
Xét \(\Delta\)DEH và \(\Delta\)CFH:
^DHE=^CHF (Đối đỉnh)
HD=HC \(\Rightarrow\)\(\Delta\)DEH=\(\Delta\)CFH (g.c.g)
^EDH=^FCH
\(\Rightarrow\)HE=HF (2 cạnh tương ứng) => Đpcm.
Gọi giao điểm HM với DC là P; giao điểm HN với BC là E
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC
Lại có HC vuông góc với AB (CH là đường cao)
=> NM//AB
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN)
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK
\(a,\left\{{}\begin{matrix}DH=HC\\BM=MC\end{matrix}\right.\Rightarrow HM\) là đtb tam giác BDC
\(\Rightarrow HM//BD\)
\(b,HM//BD\left(cm.trên\right)\\ \Rightarrow BD\perp HE\left(1\right)\left(HM\perp HE\right)\)
Lại có H là trực tâm nên CH là đường cao tam giác ABC
\(\Rightarrow CH\perp AB\Rightarrow HD\perp BE\left(2\right)\)
Mà \(DE\cap BE=E\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow E\) là trực tâm tam giác HBD
\(c,\) H là trực tâm nên BH là đường cao
\(\Rightarrow BH\perp AC\left(4\right)\)
Mà E là trực tâm nên DE là đường cao
\(\Rightarrow DE\perp BH\left(5\right)\\ \left(4\right)\left(5\right)\Rightarrow DE//AC\)
\(d,\left\{{}\begin{matrix}DH=HC\\\widehat{DHE}=\widehat{CHF}\left(đối.đỉnh\right)\\\widehat{DEH}=\widehat{HFC}\left(so.le.trong\right)\end{matrix}\right.\Rightarrow\Delta DHE=\Delta CHF\left(g.c.g\right)\\ \Rightarrow EH=HF\)
Gọi giao điểm HM với DC là P; giao điểm HN với BC là E
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC
Lại có HC vuông góc với AB (CH là đường cao)
=> NM//AB
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN)
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK
nhớ k nha
a,{DH=HCBM=MC⇒HMa,{DH=HCBM=MC⇒HM là đtb tam giác BDC
⇒HM//BD⇒HM//BD
b,HM//BD(cm.trên)⇒BD⊥HE(1)(HM⊥HE)b,HM//BD(cm.trên)⇒BD⊥HE(1)(HM⊥HE)
Lại có H là trực tâm nên CH là đường cao tam giác ABC
⇒CH⊥AB⇒HD⊥BE(2)⇒CH⊥AB⇒HD⊥BE(2)
Mà DE∩BE=E(3)DE∩BE=E(3)
(1)(2)(3)⇒E(1)(2)(3)⇒E là trực tâm tam giác HBD
c,c, H là trực tâm nên BH là đường cao
⇒BH⊥AC(4)⇒BH⊥AC(4)
Mà E là trực tâm nên DE là đường cao
⇒DE⊥BH(5)(4)(5)⇒DE//AC⇒DE⊥BH(5)(4)(5)⇒DE//AC