K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

câu b:
[​IMG]AFB và [​IMG]AEC có:
góc BAC chung
góc AFB=góc AEC= 90 độ
vậy [​IMG]AFB [​IMG] [​IMG]AEC(G.G)
\RightarrowBF/CE=AB/AC
mà AB<AC(gt) nên BF<CE
câu c:
vì [​IMG]AFB [​IMG] [​IMG]AEC(cmt) nên
AF/AE=AB//AC
\RightarrowAF/AB=AE/AC
xét [​IMG]AFE và [​IMG]ABC có
góc BAC chung
AF/AB=AE/AC
vậy [​IMG]AFE [​IMG] [​IMG]ABC(g.c.g)

18 tháng 3 2022

Xét  ∆AHE và ∆BHD, ta có
<D=<E=90° 
<BHD=<EHA ( đối đỉnh)
⟹ ∆AHE ∼∆BHD(g.g)
⟹HA/HB=HE/HD⟹ HA*HD=HB*HE

a, 

Ta có ON // BH ( cùng vuông góc với AC )

OM // AH ( cùng vuông góc với BC )

MN // AB ( MN là đường trung bình của tam giác ABC )

Vậy tam giác OMN đồng dạng với tam giác HAB.

b,

Xét tam giác AHG và MOG có :

\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )

\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )

Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)

Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)

\(\Rightarrow H,G,O\)thẳng hàng

Xét ΔABD vuông tại D và ΔCHD vuông tại D có

góc BAD=góc HCD

=>ΔABD đồng dạng vớiΔCHD

19 tháng 9 2018

Trong hình bên có 3 cặp tam giác đồng dạng là BHA và BAC; CHA và CAB; HAB và HCA.

22 tháng 4 2023

Cảm ơn bạn! Giúp mình câu c nhế!

loading...  loading...  loading...  

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: Xet ΔHEB vuôg tại E và ΔHDC vuông tại D có

góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

c: ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

16 tháng 3 2023

Cảm ơn ban rất nhiều