Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải rõ chỗ bạn chưa hiểu nhé:
\(HB^2-16HB+25HB-400=0\Leftrightarrow HB\left(HB-16\right)+25\left(HB-16\right)=0\)
\(\Rightarrow\left(HB-16\right)\left(HB+25\right)\)
\(\Rightarrow HB=16;HB=-25\)
Có: HB > 0 => HB = 16 cm
Áp dụng hệ thức lg trong tam giác vuông:
\(AB^2=BH.BC\)
\(\Leftrightarrow20^2=BH\left(BH+9\right)\)
\(\Leftrightarrow BH^2-9BH-400=0\)
\(\Rightarrow BH=16\) (cm)
\(BC=HC+HC=16+9=25\left(cm\right)\)
Áp dụng định lí Pitago có:
\(AC^2=BC^2-AB^2=25^2-20^2=225\left(cm\right)\)
\(\Rightarrow AC=\sqrt{225}=15\left(cm\right)\)
Ta có \(CH=AC.cos\widehat{C}=35.cos50^o\)
\(AH=AC.sin\widehat{C}=35.sin50^o\)
\(BH=AH.cot\widehat{B}=35.sin50^o.cot60^o\)
\(\Rightarrow BC=BH+CH=35.cos50^o+35.sin50^o.cot60^o\)
\(\Rightarrow S_{ABC}=\frac{AH.BC}{2}=\frac{35.sin50^o\left(35.cos50^o+35.sin50^o.cot60^o\right)}{2}\)
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
nên BC=15(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7,2\left(cm\right)\\BH=5.4\left(cm\right)\\CH=9.6\left(cm\right)\end{matrix}\right.\)
a, \(\cos B=\cos60^0=\dfrac{AC}{BC}=\dfrac{1}{2}\Leftrightarrow AC=10\left(cm\right)\)
\(AB=\sqrt{BC^2-AC^2}=10\sqrt{3}\left(cm\right)\left(pytago\right)\)
\(b,\) Sửa: Tính AH,BH,CH
Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=15\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5\left(cm\right)\end{matrix}\right.\); \(AH=\dfrac{AB\cdot AC}{BC}=5\sqrt{3}\left(cm\right)\)
a: Xét ΔABC vuông tại A có BC^2=AB^2+AC^2
=>BC^2=5^2+12^2=169
=>BC=13(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot13=5\cdot12=60\)
=>AH=60/13(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\)
Xét ΔAHB vuông tại H có
\(sinBAH=\dfrac{BH}{AB}=\dfrac{25}{13}:5=\dfrac{5}{13}\)
=>\(\widehat{BAH}\simeq22^0\)
b: HB=HD
=>HD=25/13(cm)
BD=25/13*2=50/13(cm)
BD+DC=BC
=>DC=BC-BD=13-50/13=119/13(cm)
=>R=DC/2=119/26(cm)
c: Xét (O) có
ΔCMD nội tiếp
CD là đường kính
Do đó: ΔCMD vuông tại M
Xét ΔABD có
AH vừa là đường cao, vừa là đường trung tuyến
Do đó: ΔABD cân tại A
=>AB=AD
Xét tứ giác AHDM có
\(\widehat{AHD}+\widehat{AMD}=180^0\)
=>AHDM là tứ giác nội tiếp
=>\(\widehat{ADH}=\widehat{AMH}=\widehat{ABD}\)
ΔAMD vuông tại M
=>AM<AD
mà AD=BA
nên AM<AB
d: \(DM\perp AC;AB\perp AC\Leftrightarrow\)DM//AB
=>\(\widehat{MDA}=\widehat{DAB}\)
=>\(\widehat{MDA}=2\cdot\widehat{DAH}\)
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)
Áp dụng HTL tam giác
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
góc A=180-50-60=70 độ
Xét ΔABC có BC/sinA=AB/sinC=AC/sin B
=>BC/sin70=12/sin60=AC/sin50
=>\(BC\simeq13,02;AC\simeq10,61\)
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot12\cdot10.61\cdot sin70\simeq59,82\)
\(AH=2\cdot\dfrac{59.82}{10.61}\simeq11,28\)
\(HB=\sqrt{AB^2-AH^2}=\sqrt{12^2-11.28^2}\simeq4,09\)
HC=10,61-4,09=6,52
giúp mik vs