Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc B > 90 độ
\(\Rightarrow\)cạnh huyền AD lớn nhất => AB < AD (1)
góc ADC > góc B = 90 độ (góc ngoài tại D của tam giác ABD)
=> góc ADC > 90 độ => cạnh huyền AC lớn nhất => AD < AC (2)
Từ (1) và (2), => AB < AD <AC (đpcm)
trong tam giác ABD có góc B > 90 độ => góc B là góc lớn nhất và góc ADB <90 độ
=> AD> AB ( quan hệ góc cạnh trong tam giác) hay AB<AD (1)
có góc ADB + góc ADC = 180 độ mà góc ADB < 90 độ
=> góc ADC > 90 độ
trong tam giác ADC có góc ADC > góc ACD => AC> AD hay AD<AC (2)
từ (1) và (2) => AB< AD< AC
Bài 2:
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
Xét ΔABD có \(\widehat{B}>90^0\)
nen AD là cạnh lớn nhất
=>AB<AD(1)
XétΔADC có \(\widehat{ADC}>90^0\)
nên AC là cạnh lớn nhất
=>AD<AC(2)
Từ (1) và (2) suy ra AB<AD<AC
a, xét ΔABC và ΔADE có : AD = AB (gt)
AE = AC (gt)
^BAC = ^DAE = 90
=> ΔABC = ΔADE (2cgv)
=> DE = BC (định nghĩa)
b, xét ΔEAC có ^EAC = 90
AE = AC (gt)
=> ΔEAC vuông cân tại A (định nghĩa)
=> ^CEA = 45 (tính chất) (1)
xét ΔBAD có ^BAD = 90
AD = AB (gt)
=> ΔBAD vuông cân tại A (định nghĩa)
=> ^ABD = 45 (2)
(1)(2) => ^CEA = ^ABD mà 2 góc này so le trong
=> BD // CE (định lí)
Xét tam giác BAC và tam giác DAE
có AB=AD (GT)
góc BAC = góc DAE = 900
AC=AE (GT)
suy ra tam giác BAC = tam giác DAE ( c.g.c)
suy ra BC= DE (hai cạnh tương ứng)
b) Vì AD=AB nên tam giác ABC cân tại A
mà góc A=900
suy ra tam giác ABC vuông cân tại A suy ra góc ABD=góc ADB=450 (1)
Xét tam giác ACE có AC=AE, góc CAE=900
suy ra tam giác ACE cân tại A suy ra góc ACE=góc AEC=450 (2)
Từ( 1) và (2) suy ra góc ABD= góc AEC (3)
mà góc ABD đồng vị với góc AEC (4)
Từ (3) và (4) suy ra BD//CE
góc B>90 độ
=>AB<AD
góc B>90 độ
=>góc ADB<90 độ
=>góc ADC>90 độ
=>AD<AC
=>AB<AD<AC