Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B2 : Hình dễ bạn tử kẻ hình nhá !
a)Ta có AH là đường cao
=> Góc AHB = AHC = 90o
Xết tam giác AHB có :
BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )
=> BAH + 90o + 70o =180o
=> BAH = 180o-70o-90o
=> BAH = 20o
Xét tam giác AHC cps :
AHC + HAC + HCA = 180o
=> 90 + HAC + 30 = 180
=> HAC = 180-30-90=60o
b) Ta có AD là đường phân giác
=> ABD= CAD = 80/2 = 40o
Xét tam giác ADB có :
ABD + BDA +DAB = 180
=> 70 + BDA + 40 = 180
=> BDA = 180-40-70 = 70
Xét tam giác ADC có :
ACD + CDA + DAC = 180
=> 30 + CDA + 40 = 180
=> CDA = 180-40-30
=> CDA=110
( **** )
a) Ta có :
BI là phân giác ABC
=> ABI = CBI = \(\frac{1}{2}AbC\)
CI là phân giác ACB
=> ACI = BCI = \(\frac{1}{2}ACB\)
Xét ∆ABC có :
A + ABC + ACB = 180°
=> ACB + ABC = 180° - 50° = 130°
=> IBC + ICB = \(\frac{1}{2}\left(ABC+ACB\right)\)
= 65°
Xét ∆BIC có :
BIC + ICB + IBC = 180°
=> BIC = 180° - 65° = 115°
Góc ngoài tại đỉnh B = 180° - ABC
Góc ngoài tại đỉnh C = 180° - ACB
Góc ngoài tại đỉnh B + Góc ngoài tại đỉnh C = 180° - ABC + 180° - ACB
= 360° - ( ABC + ACB ) = 230°
Vì BK là phân giác góc ngoài tại đỉnh B
=> CBK = \(\frac{1}{2}\)góc ngoài tại đỉnh B
Vì CK là phân giác góc ngoài tại đỉnh C
=> BCK = \(\frac{1}{2}\)góc ngoài tại đỉnh C
=> CBK + BCK = \(\frac{230°}{2}\)= 115°
Xét ∆BCK có :
CBK + BCK + BKC = 180°
=> BKC = 180° - 115° = 65°
Ta có : ABC + Góc ngoài đỉnh B = 180°
Ta có :
IBC + KBC = \(\frac{180°}{2}\)= 90° = IBK
Chứng minh tương tự ta có : ICK = 90°
b) Ta có :
BIC + DIC = 180°
=> DIC = 180° - 115° = 65°
Ta có :
ICK + ICD = 180° ( kề bù )
=> ICD = 180° - 90° = 90°
Xét ∆DIC có :
ICD + IDC + DIC = 180°
=> IDC = 180° - 90° - 65° = 25°
Hay BDC = 25°
c) Ta có :
B= 2C
Mà B + C = 130°
=> 2C + C = 130°
=> 3C = 130°
=> C ≈ \(\frac{130}{3}\:\approx43°\)
=> B = 86°
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)