Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét △ABM và △ECM CÓ
BM=MC(AM là trung tuyến)
AMB=CME( 2 góc đối đỉnh)
ME=MA(GT)
Nên △ABM=△ECM(c.g.c)
=>AB=CE (hai cạnh tương ứng)
hình bạn tự vẽ nhé
a) xét tg ABM và tg ECM có : +AM=ME (GT) +BM=MC (AM là trung tuyến) (gt) + góc AMB=góc EMC (đối đỉnh)
=> tg ABM=tg ECM (C.G.C)
b) xét tg ABC có : góc B = 90 độ (gt) => AC là cạnh lớn nhất => AC>AB. Mà AB=CE (2 cạnh tương ứng tg ABM và tg CEM)
=> AC>AE
c) trong tg ACE có : góc CEA đối diện với cạnh AC. góc CAM đối diện với cạnh CE
mà AC>CE => góc CEA>góc CAM mà góc CEA=góc MAB ( 2 góc tương ứng tg ABM và tg CEM) => góc MAB>góc MAC
a: Xét ΔMAB và ΔMEC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔMAB=ΔMEC
b: AC>AB
=>AC>CE
c: góc BAM=góc CEA
mà góc CEA>góc CAM
nên góc BAM>góc CAM
a: Xét ΔMBA và ΔMCE có
MB=MC
góc BMA=góc CME
MA=ME
=>ΔMBA=ΔMCE
b: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
=>ABEC là hình bình hành
=>BE//AC
a.Xét Δ ABM và Δ ECM có:
AM=ME (gt)
^AMB=^EMC( 2 góc đối đỉnh)
^A1=^E1(2 góc T/ứ)
Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: EC=AB
=>AC>CE