Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=700, góc C=500 nên góc A=600.
Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400
Áp dụng HTCVGTTGV ABH,ta có :
BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 700 =23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)
Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.
Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1 =300
Xét tam giác vuông AHC,ta có:
AH2 +HC2 =AC2
(12√3)2 +182 =AC2
=>AC=6√21 (cm)
Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH
12√3=tan góc C.18
=> góc C=490 =>góc A2 =410 =>gócA= 710
Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm
Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490
Ròy đóa Tuyền
tui làm xong rồi!!! đăng lên hỏi thử coi đáp án đúng ko thôi
a, ^B = ^A - ^C = 900 - 300 = 600
\(\cos B=\frac{AB}{AC}\Rightarrow\frac{1}{2}=\frac{9}{AC}\Rightarrow AC=18\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=81+324=405\Rightarrow BC=9\sqrt{5}\)cm
b, \(\cos B=\frac{BH}{AB}\Rightarrow\frac{1}{2}=\frac{BH}{9}\Rightarrow BH=\frac{9}{2}\)cm
\(\sin B=\frac{AH}{AB}\Rightarrow\frac{\sqrt{3}}{2}=\frac{AH}{9}\Rightarrow AH=\frac{9\sqrt{3}}{2}\)cm
c, Vì AD là đường phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{9\sqrt{5}}{27}=\frac{\sqrt{5}}{3}\)
\(\Rightarrow BD=\frac{\sqrt{5}}{3}AB=\frac{\sqrt{5}}{3}.9=3\sqrt{5}\)cm
\(\Rightarrow HD=BD-BH=3\sqrt{5}-\frac{9}{2}\)cm
Áp dụng định lí tam giác AHD vuông tại H ta có :
\(AD^2=AH^2+HD^2=\left(\frac{9\sqrt{3}}{2}\right)^2+\left(3\sqrt{5}-\frac{9}{2}\right)^2\)
tự giải nhé ><
a. Giải tam giác ABC
B=60^0
AC=AB/tan30=9.√ 3
BC=AB/sin30=9.2 =18
S=AC.AB/2=81√ 3/2
b. Kẻ AH là đường cao, tính AH, BH
AH=2S/BC=81√ 3/18=9√ 3/2
BH=√ (AB^2-AH^2)=9√ (1-3/4)=9/2
Cái này là giải tam giác, em muốn làm được thì đọc lại lý thuyết về: Định nghĩa các giá trị lượng giác sin, cos, tam và cotan, về định lý Pita go và hệ thức lượng trong tam giác là có thể giải được :) Nếu em mới bắt đầu lên lớp 9 thì cô khuyên nên học hình cẩn thận ngay từ đầu vì nó sẽ khá khó ^^
Cô sẽ giúp bài này nhé :)
Xét tam giác vuông ABH, ta có: \(sinABH=\frac{AH}{AB}=\frac{2}{4}=\frac{1}{2}\)
Vậy góc B = 30 độ. Từ đó góc C = 60 độ.
Do góc B=30 độ nên \(cosB=\frac{BA}{BC}=\frac{4}{BC}=cos30=\frac{\sqrt{3}}{2}\)
Vậy \(BC=\frac{8\sqrt{3}}{3}\)
Từ đo có thể dùng Pitago hoặc định nghĩa lượng giác tìm \(AC=\frac{4\sqrt{3}}{3}\)
Ta có: ∠A + ∠B + ∠C = 180 0
⇒ ∠A = 180 0 - ∠B - ∠C = 180 0 - 65 0 - 45 0 = 70 0
Kẻ đường cao AH
Xét tam giác ABH vuông tại H có:
AH = AB.sin B = 2,8.sin 65o ≈ 2,54 cm
BH = AB.cos 65o = 2,8.cos 65o ≈ 1,18 cm
Xét tam giác AHC vuông tại H có:
HC = AH.cotg C = 2,54.cotg 45 0 ≈ 2,54 cm
Ta có: BC = BH + HC = 1,18 + 2,54 = 3,72 cm
Vậy ∠A = 70 0 ; AC = 3,59 cm; BC= 3,72 cm