K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

câu d sai đề EF.KC = FK.EC?

a: Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{BM}=\dfrac{4}{6}=\dfrac{2}{3}\)

b: Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\left(1\right)\)

Xét ΔAMC có 

ME là đường phân giác ứng với cạnh AC

nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)

Ta có: M là trung điểm của BC

nên MB=MC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

c: Xét ΔABC có 

\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

nên DE//BC

29 tháng 9 2018

Gọi K là trung điểm của BE

Ta có KM là đg trung bình của tam giác BEC
\(KM=\frac{1}{2}EC\)(1)

và KM//AC

Suy ra: góc KMD=DAE(slt)

Chứng minh tam giác ADE=tam giác MDK

Suy ra: \(AE=KM\)(2)

Từ (1) và (2)

Vậy.....

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Lời giải:

Áp dụng định lý Menelaus cho tam giác $AMC$ có $B,D,E$ thẳng hàng:

$\frac{BM}{BC}.\frac{DA}{DM}.\frac{EC}{EA}=1$

$\Leftrightarrow \frac{1}{2}.1.\frac{EC}{EA}=1$

$\Leftrightarrow EC=2EA$ hay $EA=\frac{1}{2}EC$ (đpcm)

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Hình vẽ:

11 tháng 10 2021

Xét ΔBEC có

M là trung điểm của BC

F là trung điểm của EC

Do đó: MF là đường trung bình của ΔBEC

Suy ra: MF//DE

Xét ΔAMF có 

D là trung điểm của AM

DE//MF

Do đó: E là trung điểm của AF
Suy ra: AE=EF

mà EF=FC

nên AE=FE=FC

hay \(AE=\dfrac{EC}{2}\)

24 tháng 10 2017

a) Ta có EM là đường trung bình của tam giác BCD Þ ĐPCM.

b) DC đi qua trung điểm D của AE và song song với EM Þ DC đi qua trung điểm I của AM.

c) Vì DI là đường trung bình của tam giác AEM nên DI = (1/2) EM.(1)

Tương tự, ta được: EM = (1/2)DC (2)

Từ (1) và (2) Þ DC = 4DI