Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh rằng cotC = 3cotB, ta sẽ sử dụng các tính chất của tam giác và công thức liên quan đến cotangent.
Vì ma = c là trung tuyến của tam giác ABC, ta có AM = MC. Do đó, ta có tam giác AMC là tam giác cân tại A.
Áp dụng công thức của cotangent trong tam giác cân, ta có cotC = cotA = cotB.
Vậy, ta có cotC = cotB.
Tuy nhiên, để chứng minh rằng cotC = 3cotB, cần thêm thông tin về tam giác ABC hoặc các điều kiện khác.
\(tanB=\dfrac{AC}{AB}=\sqrt{3}\Rightarrow B=60^0\)
\(\Rightarrow\widehat{BAM}=\widehat{B}=60^0\)
\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)
\(\overrightarrow{BA}.\overrightarrow{AM}=-\overrightarrow{AB}.\overrightarrow{AM}=-AB.AM.cos\widehat{BAM}=-\dfrac{a^2}{2}\)
xét tam giác ABC ta có góc BMA=góc MAC +góc ACM ( góc ngoài của tam giác).
=> góc MAC = góc ABC- góc ACB (tam giác ABM cân vì AB=AM với AM là đường trung tuyến=> góc ABM= góc AMB).
=>SABC=\(\frac{AM.AC.sinMAC}{2}\)=\(\frac{AB.AC.sinA}{2}\)
mà SABC=SACM => sin A =sin(B-C)
=> ĐPCM
a)\(VT=sinA+sinB+sinC=2sin\frac{A+B}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)(đpcm)
a.
\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận (2;-1) là 1 vtcp
Phương trình AB (qua A) có dạng: \(\left\{{}\begin{matrix}x=1+2t\\y=2-t\end{matrix}\right.\)
\(\overrightarrow{CB}=\left(5;-1\right)\Rightarrow\) đường thẳng BC nhận (5;-1) là 1 vtcp
Phương trình BC (qua C) có dạng: \(\left\{{}\begin{matrix}x=5t_1\\y=1-t_1\end{matrix}\right.\)
\(\overrightarrow{CA}=\left(1;1\right)\Rightarrow\) đường thẳng AC nhận (1;1) là 1 vtcp
Phương trình AC (qua A) có dạng: \(\left\{{}\begin{matrix}x=1+t_2\\y=2+t_2\end{matrix}\right.\)
b.
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{5}{2};\dfrac{1}{2}\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(\dfrac{3}{2};-\dfrac{3}{2}\right)=\dfrac{3}{2}\left(1;-1\right)\)
\(\Rightarrow\) Đường thẳng AM nhận (1;-1) là 1 vtcp
Phương trình AM (qua A) có dạng: \(\left\{{}\begin{matrix}x=1+t_3\\y=2-t_3\end{matrix}\right.\)
c.
Đường thẳng AH vuông góc BC nên nhận (1;5) là 1 vtcp
Phương trình AH (qua A) có dạng: \(\left\{{}\begin{matrix}x=1+t_4\\y=2+5t_4\end{matrix}\right.\)
d.
Trung trực AB vuông góc AB nên nhận (1;2) là 1 vtcp
Gọi N là trung điểm AB \(\Rightarrow N\left(3;1\right)\)
Trung trực AB đi qua N và có vtcp là (1;2) nên pt có dạng:
\(\left\{{}\begin{matrix}x=3+t_5\\y=1+2t_5\end{matrix}\right.\)
AM là trung tuyến của tam giác ABC cân tại A
=> AM là đường trung trực của tam giác ABC
=> M là trung điểm của BC
=> \(BM=CM=\frac{BC}{2}=\frac{32}{2}=16\) (cm)
Tam giác ABM vuông tại M có:
\(AB^2=AM^2+BM^2\)
\(34^2=AM^2+16^2\)
\(AM^2=34^2-16^2\)
\(AM^2=1156-256\)
\(AM^2=900\)
\(AM=\sqrt{900}\)
\(AM=30\) (cm)
Chúc bạn học tốt
Tớ làm thế này có đúng ko nhé
Vì đường trung tuyến đi qua trung điểm của
đoạn thẳng BC
Suy ra: BM=CM=32:2=16cm
Xét tam giác ABM và AMC
AB=AC(gt)
AM là cạnh chung
MB=MC(gt)
⇒tam giác ABM=tam giác AMC(c.c.c)
Do đó góc AMB=góc AMC(1)
Mà góc AMB+gócAMC=180(kề bù)(2)
Từ 1 và 2 suy ra góc AMB= góc AMC=90 độ
Xét tam giác ABM vuông tại M
Áp dụng định lý Pi-Ta-Go ta có
AM2+BM2=AB2
AM2+162=342
AM=342-162=900
AM=30
vậy AM=30 cm
Đề bài sai, phản ví dụ:
Tam giác ABC vuông tại A với \(AB=1;AC=\sqrt{3};BC=2\)
Khi đó \(AM=\dfrac{1}{2}BC=1=AB\) thỏa mãn yêu cầu bài toán
Góc \(B=60^0;A=90^0\)
Khi đó: \(sinA=1\) trong khi \(2sin\left(B-A\right)=2sin\left(-30\right)=-1\)