K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

đè là j z bn

15 tháng 10 2019

A B C M D E I

a, AM là đường trung tuyến

=> M là trung điểm của BC (đn)

ED = EB (gT) => E là trung điểm của BD (đn)

=> EM là đường trung bình của tam giác BDC (đn)

=> EM // DC (Đl)

b, AD = DE => D là trung điểm của AE (đn)

EM // DC (câu a); xét tam giácAEM 

=> I là trung điểm của AM (đl)

c, 

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:a) Tam giác ABC cân ở Ab) O là trọng tâm của tam giác ABCBài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:a) Góc CEB= góc ADC và...
Đọc tiếp

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:

a) Tam giác ABC cân ở A

b) O là trọng tâm của tam giác ABC

Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:

a) Góc CEB= góc ADC và Góc EBH= góc ACD

b) BE vuông góc BC

C) DF song song BE

Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK

a) Tính AB

b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông

c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK

d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK

Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm

a) Tính AC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE

d) Chứng minh: BE vuông góc với FC

1
2 tháng 5 2016

dài thế bạn.

đọc xong  đề bài mình ngủ luôn

7 tháng 1

loading... a) Do M là trung điểm của BC (gt)

⇒ BM = MC

Do M là trung điểm của AD (gt)

⇒ AM = MD

Xét ∆ABM và ∆DCM có:

AM = MD (cmt)

∠AMB = ∠CMD (đối đỉnh)

BM = MC (cmt)

⇒ ∆ABM = ∆DCM (c-g-c)

b) Do ∆ABM = ∆DCM (cmt)

⇒ ∠ABM = ∠CDM (hai góc tương ứng)

Mà ∠ABM và ∠CDM là hai góc so le trong

⇒ AB // CD

c) Do AB // CD (cmt)

⇒ ∠CAE = ∠ACD (so le trong)

∠ACE = ∠CAD (so le trong)

Xét ∆ACE và ∆CAD có:

∠ACE = ∠CAD (cmt)

AC là cạnh chung

∠CAE = ∠ACD (cmt)

⇒ ∆ACE = ∆CAD (g-c-g)

⇒ AE = CD (hai cạnh tương ứng)

Do ∆ABM = ∆DCM (cmt)

⇒ AB = CD (hai cạnh tương ứng)

Mà AE = CD (cmt)

⇒ AB = AE

Vậy A là trung điểm của BE

4 tháng 12 2021

A B C M D

a) Xét tứ giác ACDB có: 

M là trung điểm của BC (gt).

M là trung điểm của AD (MD = MA)

=> Tứ giác ACDB là hình bình hành (dhnb).

=> AB = DC (Tính chất hình bình hành).

b) Tứ giác ACDB là hình bình hành (cmt).

=> BD // AC (Tính chất hình bình hành).

c) Xét tam giác ABC và tam giác DCB có:

+ BC chung.

+ AB = DC (Tứ giác ACDB là hình bình hành).

+ AC = DB (Tứ giác ACDB là hình bình hành).

=> Tam giác ABC = Tam giác DCB (c - c - c).

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

b: Xét ΔADH và ΔAEH có

AD=AE

góc DAH=góc EAH

AH chung

=>ΔADH=ΔAEH

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau