K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2022

a, Xét △ABH và △AHD có:

∠AHB=∠ADH (=90o) , ∠BAH chung

⇒ △ABH ∼ △AHD (g.g)

b, Xét △AHE và △HCE có:

∠AHE=∠ACH (cùng phụ ∠AHC), ∠AEH=∠CEH (=90o)

⇒ △AHE ∼ △HCE (g.g)

⇒ HEEC=AEHEHEEC=AEHE ⇒ HE2=AE.EC

10 tháng 4 2022

undefined

5 tháng 3 2022

undefinedundefinedundefined

 

a: góc AEH=góc ADH=góc DAE=90 độ

=>AEHD là hình chữ nhật

b: Xét ΔADH vuông tại D và ΔAHB vuông tại H có

góc DAH chung

=>ΔADH đồng dạng với ΔAHB

c: ΔAHC vuông tại H có HE vuông góc AC

nên HE^2=AE*EC

7 tháng 3 2021

khó vãi

7 tháng 3 2021

A C H D E M N B O K

24 tháng 3 2016

d,   tim AH=16,8cm do tam giác ABH dồng dạng với tam giác CBA các cạnh tuong ứng tỉ lệ

tinh CD tính chất dg pg \(\frac{CD}{DB}=\frac{AC}{AB}\)

tính chat day ti so bang nhau

\(\frac{CD}{DB+CD}=\frac{AC}{AB+AC}\)

thế số vao rồi tính suy ra CD=20, BD=15

pytago trong tam giác HAC tińh CH=22,4

suy ra DH=2,4

Diện tích tam giác AHD=1/2 *AH*DH=20,16

          Ban có thể tính laị so lieu

28 tháng 2 2018

a) Xét tam giác AHD và tam giác ABH có:

Góc A chung

\(\widehat{ADH}=\widehat{AHB}\left(=90^o\right)\)

\(\Rightarrow\Delta AHD\sim\Delta ABH\left(g-g\right)\)

\(\Rightarrow\frac{AH}{AB}=\frac{AD}{AH}\Rightarrow AH^2=AB.AD\)

b) Ta có tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

Vậy thì \(\widehat{DHA}=\widehat{DEA}\) 

Lại có \(\widehat{DHA}=\widehat{CBA}\) nên \(\widehat{DEA}=\widehat{CBA}\)

Suy ra \(\Delta ADE\sim\Delta ACB\left(g-g\right)\)

c) Gọi I là giao điểm của AO và DE.

Xét tam giác vuông ABC có AO là trung tuyến ứng với cạnh huyền nên OA = OC  hay \(\widehat{OAC}=\widehat{OCA}\)

Lại có  \(\widehat{AED}=\widehat{ABC}\)  nên \(\widehat{OAC}+\widehat{DEA}=\widehat{OCA}+\widehat{ABC}=90^o\)

Suy ra \(\widehat{AIE}=90^o\) hay \(AO\perp DE\)

d) Ta có do \(AO\perp DE\) nên:

\(S_{ADOE}=\frac{1}{2}DE.OA=\frac{1}{2}AH.\frac{BC}{2}=\frac{1}{2}a.AH\)

Vậy thì \(S_{ADOE}\) lớn nhất khi AH lớn nhất.

Xét tam giác vuông ABC, ta có

 \(BC.AH=AB.AC\le\frac{AB^2+AC^2}{2}=\frac{BC^2}{2}=2a^2\)

\(\Rightarrow AH\le a\)

Vậy AH lớn nhất khi AH = a tức là tam giác ABC vuông cân tại A.