Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên cạnh AB lấy điểm N sao cho AN = AC.
\(\Delta AMC=\Delta AMN\)(c.g.c), suy ra \(AC=AN,MC=MN\)
Áp dụng BĐT tam giác cho \(\Delta BMN\), ta có:
\(AB-AC=AB-AN=BN>MB-MN=MB-MC\)
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phân giác của \(\widehat{BAC}\))
AM chung
Do đó: ΔABM=ΔACM(c-g-c)
a) Ta có: ΔABM=ΔACM(cmt)
nên MB=MC(Hai cạnh tương ứng)
Xét ΔMBC có MB=MC(cmt)
nên ΔMBC cân tại M(Định nghĩa tam giác cân)
a:
AB+BF=AF
AE+EC=AC
mà AB=AE và AC=AF
nên BF=EC
Xét ΔAEF và ΔABC có
AE=AB
\(\widehat{EAF}\) chung
AF=AC
Do đó: ΔAEF=ΔABC
=>\(\widehat{AEF}=\widehat{ABC}\) và \(\widehat{AFE}=\widehat{ACB}\)
\(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{FBD}=\widehat{DEC}\)
Xét ΔDBF và ΔDEC có
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
\(\widehat{DFB}=\widehat{DCE}\)
Do đó: ΔDBF=ΔDEC
=>DB=DE
Xét ΔABD và ΔAED có
AB=AE
BD=ED
AD chung
Do đó: ΔABD=ΔAED
=>\(\widehat{BAD}=\widehat{EAD}\)
=>AD là phân giác của \(\widehat{BAC}\)
b: Xét ΔABM và ΔAEM có
AB=AE
\(\widehat{BAM}=\widehat{EAM}\)
AM chung
Do đó: ΔABM=ΔAEM
=>MB=ME
AC-AB=EC
mà EC>MC-ME
và MC=MF
nên AC-AB>MC-ME=MC-MB(ĐPCM)
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hình bình hành
=>AE=DB và AE//DB
=>AE//BC
b: BD=AE
mà AE<AC
nên BD<AC
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hình bình hành
=>AF//DC
mà AE//DC
nên A,E,F thẳng hàng
Cho mik hỏi chút với ạ, làm sao bạn chứng minh được AE<AC ạ?
Câu 1)
A )Ta có tam giác ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
Và AB = AC
Xét hai tam giác vuông BCK và CBH ta có :
BC chung
\(\widehat{KBC}=\widehat{BCH}\)
=>BCK = CBH (cạnh huyền - góc nhọn )
=>BH = CK (đpcm)
B) ta có BCK = CBH
=> \(\widehat{HBC}=\widehat{KCB}\)
=> \(\widehat{ABH}=\widehat{ACK}\)
=> tam giác OBC cân tại O
=> BO = CO
Xét tam giác ABO và tam giác ACO
AB = AC
BO = CO (cmt)
\(\widehat{ABH}=\widehat{ACK}\)
=> ABO=ACO (c-g-c)
=> \(\widehat{BAO}=\widehat{CAO}\)
=> AO là phân giác góc ABC (đpcm)
C) ta có
AI là phân giác góc ABC
Mà tam giác ABC cân tại A
=> AI vuông góc với cạnh BC (đpcm)
moi hok lop 6 thoi