Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AM+MB=AB(M nằm giữa hai điểm A và B)
AN+NC=AC(N nằm giữa A và C)
mà MB=NC(gt)
và AB=AC(ΔABC cân tại A)
nên AM=AN
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAMN cân tại A(cmt)
nên \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
b) Ta có: \(\widehat{AMN}=\widehat{ABC}\)(cmt)
mà hai góc này là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Xét tứ giác MNBC có MN//BC(cmt)
nên MNBC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)
Hình thang MNBC(MN//BC) có \(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
nên MNBC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
c) Xét ΔAMN có
E là trung điểm của AM(gt)
F là trung điểm của AN(gt)
Do đó: EF là đường trung bình của ΔAMN(Định nghĩa đường trung bình của hình thang)
Suy ra: EF//MN và \(EF=\dfrac{MN}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà MN//BC(cmt)
nên EF//BC(3)
Xét hình thang MNCB(MN//CB) có
H là trung điểm của MB(gt)
G là trung điểm của NC(gt)
Do đó: HG là đường trung bình của hình thang MNCB(Định nghĩa đường trung bình của hình thang)
Suy ra: HG//MN//BC và \(HG=\dfrac{MN+BC}{2}\)(Định lí 4 về đường trung bình của hình thang)(4)
Từ (3) và (4) suy ra EF//HG
Ta có: HG//BC(cmt)
nên \(\widehat{EHG}=\widehat{ABC}\) và \(\widehat{FGH}=\widehat{ACB}\)(Các cặp góc đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{EHG}=\widehat{FGH}\)
Xét tứ giác EFGH có EF//HG(cmt)
nên EFGH là hình thang có hai đáy là EF và HG(Định nghĩa hình thang)
Hình thang EFGH(EF//HG) có \(\widehat{EHG}=\widehat{FGH}\)(cmt)
nên EFGH là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Xét ΔABC có AD là đường phân giác
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
mà BD=BM và CD=CN
nên \(\dfrac{BM}{CN}=\dfrac{AB}{AC}\)
=>\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\)
=>\(1-\dfrac{BM}{AB}=1-\dfrac{CN}{AC}\)
=>\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Ta có: \(\dfrac{BD}{DC}=\dfrac{AB}{AC}\)
=>\(\dfrac{BD}{DC}=\dfrac{7}{8}\)
=>\(\dfrac{BD}{7}=\dfrac{CD}{8}\)
mà BD+CD=BC=12cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{7}=\dfrac{CD}{8}=\dfrac{BD+CD}{7+8}=\dfrac{12}{15}=0,8\)
=>\(BD=0,8\cdot7=5,6\left(cm\right);CD=8\cdot0,8=6,4\left(cm\right)\)
Ta có: BD=BM
mà BD=5,6cm
nên BM=5,6cm
Ta có: CD=CN
mà CD=6,4cm
nên CN=6,4cm
Ta có: AM+MB=AB
=>AM+5,6=7
=>AM=1,4cm
Ta có: AN+NC=AC
=>AN+6,4=8
=>AN=1,6cm
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
Xét ΔABC có MN//BC
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AB}\)
=>\(\dfrac{MN}{12}=\dfrac{1}{5}\)
=>MN=2,4(cm)
Chu vi tam giác AMN là:
1,6+1,4+2,4
=4+1,4
=5,4(cm)