Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E F H I
Giải
a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:
\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)
\(\widehat{BFH}=\widehat{CEH}=90^o\)
=> \(\Delta BHF\) s \(\Delta CHE\) (g - g)
b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{A}\) là góc chung
\(\widehat{AEB}=\widehat{AFC}=90^o\)
=> \(\Delta ABE\) s \(\Delta ACF\) (g - g)
=> \(\frac{AB}{AC}=\frac{AE}{AF}\)
=> AF . AB = AE . AC
c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:
\(\widehat{A}\) là góc chung
\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) s \(\Delta ACF\))
=> \(\Delta AEF\)s \(\Delta ABC\) (c - g - c)
d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔADC vuông tại D và ΔBEC vuông tại E có
\(\widehat{ACD}\) chung
Do đó:ΔADC\(\sim\)ΔBEC
b: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có
\(\widehat{FBC}\) chung
Do đó: ΔBFC\(\sim\)ΔBDA
Suy ra: BF/BD=BC/BA
hay \(BF\cdot BA=BD\cdot BC\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mình không biết vẽ hình nên chỉ giải cho bạn thôi nha
a) Xét tam giác DBA và Tam giác ABC có
D=A=90 độ
B góc chung
vậy tam giác DBA đồng dạng với tam giác ABC (g.g)
b)
vì Góc A = 90 độ nên góc B + góc C = 90 độ
mà Góc B = 2Góc c nên 2góc C+ góc C =90 độ
<=> 3Góc C=90 độ => Góc C = 30 độ
Góc B=60 độ
mà BE là phân giác Góc B nên góc ABE= góc EBC= ECB = 30 độ
Xét Tam giác ABE và Tam giác ACB có
Góc A chung
góc ABE= ECB(cmt)
vậy Tam giác ABE đồng dạng với tam giác ACB(g.g)
=> \(\frac{AB}{AC}=\frac{AE}{AB}\Rightarrow AB.AB=AC.AE\)(điều phải chứng minh)
c) Vì tam giác DBA đồng dạng với tam giác ABC
=> \(\frac{AB}{BC}=\frac{BD}{AB}\)(1)
Tam giác ABD có BF là phân giác góc B, ta có
\(\frac{FD}{FA}=\frac{BD}{AB}\left(2\right)\)
Tam giác ABC có BE là phân giác góc B, ta có:
\(\frac{AE}{EC}=\frac{AB}{AC}\left(3\right)\)
Từ (1),(2) và (3) ta suy ra \(\frac{FD}{FA}=\frac{AE}{EC}\Rightarrow EA.FA=EC.FD\)(điều phải chứng minh)