K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2023

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK

b: Ta có: ΔAHB=ΔAKC

=>\(\widehat{ABH}=\widehat{ACK}\)

=>\(\widehat{KBI}=\widehat{HCI}\)

Ta có: AK+KB=AB

AH+HC=AC

mà AK=AH và AB=AC

nên KB=HC

Xét ΔIKB vuông tại K và ΔIHC vuông tại H có

KB=HC

\(\widehat{KBI}=\widehat{HCI}\)

Do đó: ΔIKB=ΔIHC

c: ta có: ΔIKB=ΔIHC

=>IB=IC

Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

d: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: IB=IC

=>I nằm trên đường trung trực của BC(2)

ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,I,M thẳng hàng

10 tháng 2 2020

Hình vẽ: 

A B C K H

Xét \(\Delta AKC\)và \(\Delta AHB\)có:

\(BH=CK\left(gt\right)\)

\(\widehat{A}\)là góc chung

\(\widehat{AKC}=\widehat{AHB}\left(=90^0\right)\)

\(\Rightarrow\Delta AKC=\Delta AHB\left(ch.gn\right)\)

\(\Rightarrow AC=AB\)

\(\Rightarrow\Delta ABC\)cân tại A

Giả thiết: \(\Delta ABC,BH\perp AC\left(H\in AC\right),CK\perp AB\left(K\in AB\right),BH=CK\)

Kết luận: Chứng minh \(\Delta ABC\)cân?

Trả lời hơi muộn, have a nice day!

13 tháng 2 2022

2 người ba đứa bé là bố đứa bé +1 đứa bé =2 người vì ba có thể viết là 3 nhưng tác giả lại cho là ba vậy bí ẩn ở chữ ba

5 tháng 3 2020

A B C M H K

a) Xét △AMB và △AMC có :

           AB = AC (gt)

           ^ABC = ^ACB (gt)

           ^BAM = ^CAM (gt)

\(\Rightarrow\)△AMB = △AMC (g.c.g)

b) Xét △ABH và △ACK có :

           ^KAH chung

           AB = AC (gt)

\(\Rightarrow\)△ABH - △ACK  (cạnh huyền-góc nhọn)

\(\Rightarrow\)BH = CK (Cặp cạnh tương ứng)

4 tháng 4 2018

Ta có: \(\left(AC+BH\right)^2=AC^2+BH^2+2AC.BH\)

\(\left(AB+CK\right)^2=AB^2+CK^2+2AB.CK\)

Ta dễ thấy do AB < AC nên BH < CK

Vậy thì \(\left(AC+BH\right)^2-\left(AB+CK\right)^2=AC^2-CK^2-\left(AB^2-BH^2\right)\)

\(=AK^2-AH^2>0\)

\(\Rightarrow\left(AC+BH\right)^2>\left(AB+CK\right)^2\)

\(\Rightarrow AC+BH>AB+CK\)

\(\Rightarrow AC-AB>CK-BH\)

a) Xét tam giác AHB và tam giác AKC có :

  A chung 

góc AKC = AHB = 90 o

AB = AC ( tam giác cân )

=> AHB = AKC ( c . g . c )

=> AH = AK ( 2 cạnh t/ ứng )