K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

Xét \(\Delta\)BKI và \(\Delta\)CHI có 

 \(\widehat{BKI}\)\(\widehat{CHI}\)

BI = IC (vì I là trung điểm của BC)

\(\widehat{BIK}\)=\(\widehat{CIK}\)(đối đỉnh)

\(\Rightarrow\)\(\Delta\)BIK = \(\Delta\)CIK (c.g.c)

\(\Rightarrow\)KI = IH 

Tứ giác KBHC có :

KI = IH 

BI=IC

\(\Rightarrow\)Tứ giác KBHC là hình bình hành 

\(\Rightarrow\)CK \(//\)BH

15 tháng 12 2017

A B C I K H M

a) xét tam giác AHB vuông tại H và tam giác AKC vuông tại K có

góc A chung

AB = AC (gt)

Vậy tam giác AHB = tam giác AKC ( cạnh huyền góc nhọn)

suy ra BH = CK, AH = AK

b) ta có AH = AK; AB = AC

mà BK = AB - AK  và  HC = AC - AH

=> Bk = HC

Xét hai tam giác vuông tam giác BIK và tam giác CIH có:

góc KIB = góc HIC ( đối đỉnh)

BK = HC (cmt)

Vậy tam gics BIK = tam giác CIH

c) M là trung điểm của BC nên AM là đường trung tuyến của tam giác ABC

mà tam giác ABC là tam giác cân tại A nên AM đồng thời là trung tuyến, đường cao

mặt khác BH và Ck cũng là đường cao của tam giác ABC nên  BH; CK; Am đồng quy tại 1 điểm

Suy ra A; I; M thẳng hàng

25 tháng 12 2015

tick đi  rồi tớ làm hộ cho

Bài 1 : Cho tam giác ABC có AB =6cm , AC = 8cm , BC = 10cm a) Chứng tỏ tam giác ABC vuông b) Gọi M là trung điểm BC . Kẻ MK vuông AC trên tia đối tia MH lấy K sao cho MK = MH chứng minh BK // AC c) BH cắt AG tại G là trọng tâm tam giác ABC Bài 2 : Cho tam giác ABC ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ACD và ACE a) Chứng minh CD = BE và CD vuông góc với BE b) Kẻ đường thẳng đi qua A vuông với BC...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB =6cm , AC = 8cm , BC = 10cm 

a) Chứng tỏ tam giác ABC vuông 

b) Gọi M là trung điểm BC . Kẻ MK vuông AC trên tia đối tia MH lấy K sao cho MK = MH chứng minh BK // AC 

c) BH cắt AG tại G là trọng tâm tam giác ABC 

Bài 2 : Cho tam giác ABC ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ACD và ACE 

a) Chứng minh CD = BE và CD vuông góc với BE 

b) Kẻ đường thẳng đi qua A vuông với BC tại H . Chứng minh AH đi qua đường thẳng DE . Lấy điểm K nằm trong tam giác ABD sao cho  góc ABH = 30 độ , AB = BK . Chứng minh chúng bằng nhau

Bài 3 : Cho tam giác ABC vuông ở C có góc A = 60 độ . Tia p/g của góc BAC cắt BC ở E , kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với AE ( D thuộc AE)

b) Chứng minh tam giác ACE = tam giác AKE và AE vuôngg góc với CK 

c) chứng minh EB > AC , 3 đường thẳng AC , BD ,, KE cùng đi qua 1 điểm 

 

2
28 tháng 6 2020

a) xét \(\Delta ABC\)

\(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=36+64=100\)

VÌ \(100=100\)

\(\Rightarrow BC^2=AB^2+AC^2\)

VẬY \(\Delta ABC\) VUÔNG TẠI A

28 tháng 6 2020

trong tam giác ABC ta có :

     AB2=62=36

     AC2=82=64

    BC2=102=100

ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )

=> tam giác ABC vuông tại A 

CHÚC BẠN HỌC TỐT !!!

27 tháng 1 2019

Hình bạn tự vẽ

a) CMR: AH = AK:

Xét tam giác AHB vuông tại H và tam AKC vuông tại K, ta có:

AB = AC ( vì tam giác ABC cân tại A )

góc A chung

Do đó: tam giác AHB = tam giác AKC ( ch-gn )

Suy ra: AH = AK ( 2 cạnh tương ứng)

b) CMR: góc KAI = góc HAI:

Xét tam giác KAI vuông tại K và tam giác HAI vuông tại H, ta có:

AH = AK ( chứng minh câu a )

cạnh AI chung

Do đó: tam giác KAI = tam giác HAI ( ch-cgv)

suy ra: góc KAI = góc HAI ( 2 góc tương ứng )

c) CM: AM vuông góc BC tại M ( AM vuông góc tại M nhé bạn )

Xét tam giác BAM và tam giác CAM, có:

cạnh AM chung

AB = AC ( vì tam giác ABC cân tại A )

góc KAI = góc HAI ( chứng minh câu b )

do đó: tam giác BAM = tam giác CAM ( c-g-c)

suy ra: góc AMB = góc AMC ( 2 góc tương ứng )

ta có: góc AMB + góc AMC = 180 độ ( kề bù )

 hay 2. góc AMB = 180 độ

=> 180 độ : 2 = 90 độ

do đó: AM vuông góc BC tại M ( đpcm )

Câu d mình làm sau do máy mình hết pin rồi!