Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta ABC\) có:
\(BC^2=5^2=25\)
\(AB^2+AC^2=3^2+4^2=25\)
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A (định lí Pytago đảo) (đpcm)
b, Ta có: \(\widehat{BAD}=90^o\) (vì \(\Delta ABC\) vuông tại A)
\(\widehat{BED}=90^o\) (vì \(DE\perp BC\) tại E)
\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)
Xét \(\Delta ABD\) và \(BDE\) có:
\(\widehat{BAD}=\widehat{BED}=90^o\) (chứng minh trên)
BD cạnh chung
\(\widehat{ABD}=\widehat{DBE}\) (vì BD là tia phân giác của \(\widehat{ABC}\))
\(\Rightarrow\Delta ABD=\Delta EBD\)(cạnh huyền - góc nhọn)
\(\Rightarrow AD=DE\) (2 cạnh tương ứng) (đpcm)
c, Ta có: \(\widehat{DAF}=90^o\) (vì kề bù với \(\widehat{BAD}=90^o\))
\(\widehat{CED}=90^o\) (vì \(DE\perp BC\) tại E)
\(\Rightarrow\widehat{DEC}=\widehat{DAF}\)
Xét \(\Delta ADF\) và \(\Delta CDE\) có:
\(\widehat{DEC}=\widehat{DEF}\) (chứng minh trên)
AD = DE (vì \(\Delta ADF=\Delta EDC\))
\(\widehat{ADF}=\widehat{CDE}\) (2 góc đối đỉnh)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\) (đpcm)
Áp dụng đlý Pytago vào tam giác ABC:
AC2=BC2+AB2
52=42+32
52=25
Vậy tam giác ABC là tam giác vuông tại B (dpcm)
a) Xét tam giác \(ABC\)có:
\(BC^2=5^2=25\)
\(AB^2+AC^2=3^2+4^2=9+16=25\)
Do đó \(BC^2=AB^2+AC^2\)theo định lí Pythaogore đảo suy ra tam giác \(ABC\)vuông tại \(A\).
b) Xét tam giác \(DBA\)và tam giác \(DBE\):
\(\widehat{DAB}=\widehat{DEB}\left(=90^o\right)\)
\(DB\)cạnh chung
\(\widehat{DBA}=\widehat{DBE}\)
Suy ra \(\Delta DBA=\Delta DBE\)(cạnh huyền - góc nhọn)
\(\Rightarrow DA=DE\)(hai cạnh tương ứng)
a)Ta có: BC2=52=25 (1)
AB2+AC2=32+42=25 (2)
Từ (1);(2)=>BC2=AB2+AC2(=25)
=>tam giác ABC vuông tại A (PyTaGo đảo)
b)Xét tam giác ABD vuông ở A và tam giác EBD vuông ở E(vì DE _|_ BC) có:
BD:cạnh chung
^ABD=^EBD (vì BD là phân giác của ^ABE)
=>tam giác ABD=tam giác EBD(ch-gn)
=>DA=DE (cặp cạnh t.ứ)
b)Xét tam giác ADF có: DF>DA (cạnh huyền>cạnh góc vuông)
Mà DA=DE(cmt)
=>DF>DE
Xét tam giác ADF vuông ở A và tam giác EDC vuông ở E có:
DA=DE(cmt)
^ADF=^EDC (2 góc đối đỉnh)
=>tam giác ADF=tam giác EDC (cgv-gnk)
=>DF=DC (cặp cạnh t.ứ)
DF ko bằng DE bn nhé!
xét tam giác adf và tam giác edc ta có
da=de (giải câu b)
góc fda = góc cde ( 2 góc đối đỉnh)
góc a= góc e
vậy tam giác adf = tam giác edc(g.c.g)
=>df=dc(2 cạnh tương ứng)(1)
xét tam giác dec vuông tại e ta có
dc>de(dc là cạnh huyền)(2)
từ (1)và (2) =>df=de
giả sử tam giác ABC vuông tại A
Theo định lí Pytago ta có : \(BC^2=AB^2+AC^2\Rightarrow25=16+9\)* đúng *
Vậy giả sử là đúng hay tam giác ABC vuông tại A ( đpcm )