K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Cho a,b,ca,b,c là các số thực dương thoả: abc=1abc=1. Cmr:aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤12) Cho a,b,ca,b,c là các số thực dương thoả mãn: a2+b2+c2=1a2+b2+c2=1. Tìm giả trị nhỏ nhất của:abc+bca+cababc+bca+cab3) Cho a≥6a≥6. CMR: a2+6√a−√6≥36a2+6a−6≥364) Cho a,b,c,da,b,c,d là các số nguyên và 1≤a≤b≤c≤d≤901≤a≤b≤c≤d≤90. Tìm giá trị nhỏ nhất...
Đọc tiếp

1) Cho a,b,ca,b,c là các số thực dương thoả: abc=1abc=1. Cmr:

aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca1aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1

2) Cho a,b,ca,b,c là các số thực dương thoả mãn: a2+b2+c2=1a2+b2+c2=1. Tìm giả trị nhỏ nhất của:

abc+bca+cababc+bca+cab

3) Cho a6a≥6. CMR: a2+6a636a2+6a−6≥36

4) Cho a,b,c,da,b,c,d là các số nguyên và 1abcd901≤a≤b≤c≤d≤90. Tìm giá trị nhỏ nhất của: P=ab+3cdP=ab+3cd

5) Cho các số thực dương x,a,b,cx,a,b,c thoả điều kiện: x2=a2+b2+c2x2=a2+b2+c2.

CMR: ax+2a+bx+2b+c2+2c32+3ax+2a+bx+2b+c2+2c≤32+3

6) Tìm giá trị lớn nhất và nhỏ nhất của hàm số:

y=2+2sin(x+Π4)+21+sinx+cosx+sinxcosxy=2+2sin⁡(x+Π4)+21+sin⁡x+cos⁡x+sin⁡xcos⁡x, với xRx∈R

7) Cho x>0x>0y>0y>0 và x+2y<5Π4x+2y<5Π4. CMR:

cos(x+y)<ysinxxsinycos⁡(x+y)<ysin⁡xxsin⁡y

8) Cho các số α,β,γα,β,γ thoả mãn: α+β+γ=Π2α+β+γ=Π2

Tính giá trị nhỏ nhất của biểu thức:

A=tanαtanβ+1+tanβtanγ+1+tanγtanα+1

0
1 tháng 6 2020

tự làm là mỗi hạnh phúc của mọi công dân

1) Cho a,b,ca,b,c là các số thực dương thoả: abc=1abc=1. Cmr:aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤12) Cho a,b,ca,b,c là các số thực dương thoả mãn: a2+b2+c2=1a2+b2+c2=1. Tìm giả trị nhỏ nhất của:abc+bca+cababc+bca+cab3) Cho a≥6a≥6. CMR: a2+6√a−√6≥36a2+6a−6≥364) Cho a,b,c,da,b,c,d là các số nguyên và 1≤a≤b≤c≤d≤901≤a≤b≤c≤d≤90. Tìm giá trị nhỏ nhất...
Đọc tiếp

1) Cho a,b,ca,b,c là các số thực dương thoả: abc=1abc=1. Cmr:

aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca1aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1

2) Cho a,b,ca,b,c là các số thực dương thoả mãn: a2+b2+c2=1a2+b2+c2=1. Tìm giả trị nhỏ nhất của:

abc+bca+cababc+bca+cab

3) Cho a6a≥6. CMR: a2+6a636a2+6a−6≥36

4) Cho a,b,c,da,b,c,d là các số nguyên và 1abcd901≤a≤b≤c≤d≤90. Tìm giá trị nhỏ nhất của: P=ab+3cdP=ab+3cd

5) Cho các số thực dương x,a,b,cx,a,b,c thoả điều kiện: x2=a2+b2+c2x2=a2+b2+c2.

CMR: ax+2a+bx+2b+c2+2c32+3ax+2a+bx+2b+c2+2c≤32+3

6) Tìm giá trị lớn nhất và nhỏ nhất của hàm số:

y=2+2sin(x+Π4)+21+sinx+cosx+sinxcosxy=2+2sin⁡(x+Π4)+21+sin⁡x+cos⁡x+sin⁡xcos⁡x, với xRx∈R

7) Cho x>0x>0y>0y>0 và x+2y<5Π4x+2y<5Π4. CMR:

cos(x+y)<ysinxxsinycos⁡(x+y)<ysin⁡xxsin⁡y

 

0
24 tháng 1 2020

gggg

24 tháng 1 2020

gggggg

DD
20 tháng 6 2021

\(\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-60^o-45^o=75^o\)

Theo định lí hàm \(sin\)trong tam giác: 

\(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

\(\Rightarrow\hept{\begin{cases}a=\frac{bsinA}{sinB}=\frac{4.sin60^o}{sin45^o}=2\sqrt{6}\\c=\frac{bsinC}{sinB}=\frac{4sin60^o}{sin75^o}=-2\sqrt{6}+6\sqrt{2}\end{cases}}\)

13 tháng 3 2021

d/ \(x^3-x^2-x-5=\left(x+4\right)\sqrt{x+2}\)

\(\Leftrightarrow\left(x-1\right)^3+2\left(x-1\right)^2+2\left(x-1\right)=\left(x+2+2\right)\sqrt{x+2}+2\left(x+2\right)\)

Đặt \(\hept{\begin{cases}x-1=a\\\sqrt{x+2}=b\end{cases}}\)

\(\Rightarrow a^3+2a^2+2a=b^3+2b^2+2b\)

\(\Leftrightarrow a=b\)

Làm nốt