K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2023

\(BC^2=AB^2+AC^2\left(Pitago\right)\)

\(\Rightarrow AC^2=BC^2-AB^2=625-400=225\)

\(\Rightarrow AC=15\left(cm\right)\)

\(AM^2=\dfrac{2.\left(AB^2+AC^2\right)-BC^2}{4}\) (Độ dài trung tuyến trong tam giác)

\(\Rightarrow AM^2=\dfrac{2.\left(400+225\right)-625}{4}=\dfrac{625}{4}\)

\(\Rightarrow AM=\dfrac{25}{2}\left(cm\right)=12,5\left(cm\right)\)

Tương tự ...

\(BN^2=\dfrac{2.\left(AB^2+BC^2\right)-AC^2}{4}\)

\(\Rightarrow BN^2=\dfrac{2.\left(400+625\right)-225}{4}=\dfrac{1825}{4}\)

\(\Rightarrow BN=\sqrt[]{\dfrac{1825}{4}}=\sqrt[]{\dfrac{73.25}{4}}=\dfrac{5\sqrt[]{73}}{4}\left(cm\right)\)

\(CE^2=\dfrac{2.\left(AC^2+BC^2\right)-AB^2}{4}\)

\(\Rightarrow CE^2=\dfrac{2.\left(225+625\right)-400}{4}=\dfrac{1300}{4}\)

\(\Rightarrow CE=\sqrt[]{\dfrac{1300}{4}}=\sqrt[]{\dfrac{13.100}{4}}=\dfrac{10\sqrt[]{13}}{4}=\dfrac{5\sqrt[]{13}}{2}\left(cm\right)\)

31 tháng 7 2023

Đính chính 

\(BN=\dfrac{5\sqrt[]{73}}{2}\left(cm\right)\)

\(CE=\dfrac{10\sqrt[]{13}}{2}=5\sqrt[]{13}\left(cm\right)\)

ΔABC vuông tại A có AM là trung tuyến

nên AM=BC/2=12,5cm

AC=căn 25^2-20^2=15cm

AN=15/2=7,5cm

BN=căn AN^2+AB^2=5/2*căn 73(cm)

AE=20/2=10cm

CE=căn AC^2+AE^2=căn 15^2+10^2=5*căn 13(cm)

28 tháng 4 2017

a, + △ABC△ABC vuông ở A nên theo định lí Pytago ta có: AB2+AC2=BC2AB2+AC2=BC2
Hay: 52+AC2=132⟹AC=1252+AC2=132⟹AC=12

+ E là trung điểm của AB nên AE=EB=AB2=52=2,5AE=EB=AB2=52=2,5

+ N là trung điểm của AC nên AN=CN=AC2=122=6AN=CN=AC2=122=6

+ △AEC△AEC vuông ở A nên theo định lí Pytago ta có: EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3

+ △ANB△ANB vuông ở A nên theo định lí Pytago ta có: NB2=AB2+AN2=62+52=61⟹BN≈7,8NB2=AB2+AN2=62+52=61⟹BN≈7,8

+ Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM=BC2=6,5AM=BC2=6,5

b,+ SABC=AB.AC:2=12.5:2=30SABC=AB.AC:2=12.5:2=30 

+ M là trung điểm BC nên BM=MC. Mà △OBM△OBM và △OCM△OCM có chung đường cao kẻ từ O nên SOBM=SOCMSOBM=SOCM

+ N là trung điểm AC nên AN=NC. Mà △AON△AON và △OCN△OCN có chung đường cao kẻ từ O nên SAON=SCONSAON=SCON

+ E là trung điểm AB nên AE=EB. Mà △OAE△OAE và △OEB△OEB có chung đường cao kẻ từ O nên SOAE=SOEBSOAE=SOEB

+ Ta có: SOBM+SOCM+SAON+SCON+SOAE+SOEB=SABCSOBM+SOCM+SAON+SCON+SOAE+SOEB=SABC. Hay:
6.SOBM=SABC⟹SOBM=SOCM=SABC6=30:6=5 (cm2)6.SOBM=SABC⟹SOBM=SOCM=SABC6=30:6=5 (cm2)

+Vậy SBOC=SOBM+SOCM=5.2=10 (cm2)

31 tháng 7 2018

b) Ta có: Sabc là

( AB*AC ) / 2

mà AB = 5cm ( GT ) , AC = 12 cm ( câu a)

suy ra ( 5*12 ) / 2 = 30 ( cm2 )

Tương tự ta có Seac là 15 cm2

Sbeo = Sabc - Seac =30 - 15 = 15 cm2

Lại có Sboc = 2/3 Sbe

Suy ra Sboc = 2/3 * 15 = 10 (cm)

Vậy diện tích tam giác BOC là 10 cm2

14 tháng 3 2017

3b)

Ta có tg BNK vuông tại K ->BN>BK

Ta có IK=MN(tính chất đoạn chắn)

Ta có : BC+MN=BK+KC+MN=BK+BI+IK=2BK

Vì BK<BN->2BK<2BN->BN>BK/2->BN>BC+MN/2

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...