Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do ∠A là góc tù nên ∠A lớn nhất. Vậy có ∠A> ∠B > ∠C. Từ đó suy ra BC > AC > AB. Chọn (D) BC > AC > AB.
Xét hai tam giác vuông ABC và DFE có: ∠A = ∠D = 90º ; AC=DE
a) Thêm điều kiện BC=EF thì ΔABC=ΔDFE (cạnh huyền - cạnh góc vuông).
b) Thêm điều kiện ∠C = ∠E thì ΔABC=ΔDFE (g.c.g).
c) Thêm điều kiện ∠C = ∠F thì ta không thể kết luận ΔABC=ΔDFE
a) Đúng;
b) Đúng;
c) Sai.
a) Đúng. Khi đó, ∆ABC = ∆FDE ( g.c.g)
b) Sai;
c) Đúng.
+)Vì ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc của tam giác).
Và ∠D + ∠E + ∠F = 180º ( tổng ba góc của tam giác)
+) Lại có; ∠B = ∠D; ∠C = ∠E nên ∠A = ∠F
+) Kết hợp giả thiết suy ra: ∆ABC = ∆ FDE ( g.c.g)
+) Do tam giác ABD cân tại D nên DA = DB ( định nghĩa tam giác cân).
Suy ra: D nằm trên đường trung trực của AB. (1)
+) Do tam giác ABC là tam giác đều nên CA = CB
Suy ra: C nằm trên đường trung trực của AB (2)
Từ (1) và (2)suy ra: CD là đường trung trực của AB.
+) Do E là trung điểm của AB nên EA = EB
Suy ra E nằm trên đường trung trực của AB
Suy ra, E nằm trên đường thẳng CD.
Do đó, (B) sai .
Chọn B.
Cho tam giác ABC vuông tại A có AB < AC. Đường cao AH. Khẳng định nào sau đây sai?
A. HC < AC
B. AH < AC
C. BH > HC
D. BC > AC
Chọn D