Bài 1: Ba bạn Toán, Tuổi và Thơ có một số vở. Nếu lấy 40% số vở của Toán chia đều cho Tuổi và Thơ thì số vở của ba bạn bằng nhau. Nhưng nếu Toán bớt đi 5 quyển thì số vở của Toán bằng tổng số vở của Tuổi và Thơ. Hỏi mỗi bạn có bao nhiêu quyển vở?Bài 2: Hình bình hành ABCD có cạnh đáy AB = 6cm, BC = 4cm, với M; N; P; Q lần lượt là trung điểm của các cạnh AB; BC; AD; BC. Hỏi: a) Hình...
Đọc tiếp
Bài 1: Ba bạn Toán, Tuổi và Thơ có một số vở. Nếu lấy 40% số vở của Toán chia đều cho Tuổi và Thơ thì số vở của ba bạn bằng nhau. Nhưng nếu Toán bớt đi 5 quyển thì số vở của Toán bằng tổng số vở của Tuổi và Thơ. Hỏi mỗi bạn có bao nhiêu quyển vở?
Bài 2: Hình bình hành ABCD có cạnh đáy AB = 6cm, BC = 4cm, với M; N; P; Q lần lượt là trung điểm của các cạnh AB; BC; AD; BC. Hỏi:
a) Hình trên có tất cả bao nhiêu hình bình hành?
b) Tổng chu vi của tất cả hình bình hành trên bằng bao nhiêu?
Bài 3: Cho tam giác ABC, trên AC lấy điểm N sao cho AN = 4/1 AC, trên BC lấy điểm M sao cho BM = MC. Kéo dài AB và MN cắt nhau ở P. a) Tính diện tích tam giác ABC, biết diện tích tam giác APN bằng 100cm2 .
b) So sánh PN và NM.
Bài 4: Cho tứ giác ABCD có diện tích 928m2 . Trên AB lấy điểm M. Nối M với C. Từ B kẻ đường thẳng song song với MC gặp DC kéo dài tại E. Nối A với E. Trên AE lấy điểm chính giữa I. Nối I với M, I với D. Tìm diện tích tứ giác AMID.
Bài 5: Cho tam giác ABC, M là điểm trên cạnh BC sao cho BM = 2 x MC. N là điểm trên cạnh AC sao cho CN = 3 x NA. AM cắt BN tại O. Hãy tính diện tích tam giác ABC, nếu biết diện tích tam giác AOB = 20cm2 .
Bài 6: Cho tam giác ABC, trên cạnh BC lấy điểm D sao cho BD gấp đôi DC. Nối A với D, lấy điểm E bất kì trên cạnh AD. Nối EB và EC. Hãy so sánh diện tích hai tam giác BAE và CAE.
a: Các tam giác trong hình vẽ là ΔADE; ΔBDE; ΔAEB; ΔDEC; ΔECB; ΔABC; ΔDIB;ΔEIC;ΔDIE;ΔBIC
b: Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
=>\(\dfrac{ID}{IC}=\dfrac{IE}{IB}=\dfrac{DE}{BC}=\dfrac{AD}{AB}=\dfrac{1}{3}\)
Vì BDEC là hình thang(DE//BC)
nên \(S_{DBC}=S_{EBC}\)(1)
Vì DI=1/3IC
nên DI=1/4IC
=>\(S_{DIB}=\dfrac{1}{4}\cdot S_{DBC}\left(2\right)\)
Vì EI=1/3IB
nên EI=1/4EB
=>\(S_{EIC}=\dfrac{1}{4}\cdot S_{EBC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(S_{DIB}=S_{EIC}\)