Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC
M thuộc d nên MA = MB. Vậy MB + MC = MA + MC. Trong tam giác MAC, ta có : MA + MC > AC. Vậy MB + MC > AC
Vì CB < CA nên C và B nằm trong cùng một nửa mặt phẳng bờ d. Do đó A và C nằm trong hai nửa mặt phẳng bờ d khác nhau. Do đó d cắt AC tại H.
Khi M trùng với H thì HB + HC = AC.
Tức là MB + MC nhỏ nhất khi M ≡≡ H giao điểm của AC với d.
M thuộc d nên MA = MB. Vậy MB + MC = MA + MC. Trong tam giác MAC, ta có : MA + MC > AC. Vậy MB + MC > AC
Vì CB < CA nên C và B nằm trong cùng một nửa mặt phẳng bờ d. Do đó A và C nằm trong hai nửa mặt phẳng bờ d khác nhau. Do đó d cắt AC tại H.
Vậy khi M ≡≡ H thì : MB + MC = HB + HC = HA + HC
=> MB + MC = AC
Vậy ta có MB + MC ≥ AC
Khi M trùng với H thì HB + HC = AC.
Tức là MB + MC nhỏ nhất khi M ≡≡ H giao điểm của AC với d.
Gọi I là giao điểm của đường trung trực của BC với BC . Nối KC
Ta có tam giác EIC = tam giác EIB ( c.g.c )
=> CE = BE ( hai cạnh tương ứng )
chu vi tam giác AEB = AE + AB + BE = AE + AB + CE ( do BE = CE )
=> chu vi tam giác ABE = AB + AC ( do AE + CE = AC )
tam giác KIB = tam giác KIC ( c.g.c )
=> KB = KC ( hai cạnh tương ứng )
chu vi tam giác AKB = AK + BK + AB = AK + KC + AB ( do BK = CK )
xét tam giác ACK theo bất đẳng thức tam giác ta có
AK + CK > AC
=> AK + CK + AB > AC + AB
=> chu vi tam giác ABK > chu vi tam giác ABE