Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)Theo giả thiết ta có: AB = AC và BD = CE nên:
AB + BD = AC + CE hay AD = AE.
+) Xét ΔABE và ΔACD có:
AB = AC (gt)
∠A chung
AE = AD (chứng minh trên)
⇒ ΔABE = ΔACD (c.g.c)
⇒ BE = CD (2 cạnh tương ứng) (1)
và ∠ABE = ∠ACD (2 góc tương ứng) (2)
Tam giác ABC cân nên ∠B1 = ∠C1. (3)
Từ (2) và (3) ⇒ ∠ABE - ∠B1 = ∠ACD - ∠C1, tức là ∠B2 = ∠C2.
⇒ ΔBIC cân tại I ⇒ IB = IC. (4)
Từ (1) và (4) suy ra BE - IB = CD – IC, tức là IE = ID.
Các tam giác cân ABC và ADC có chung góc ở đỉnh ∠A nên ∠B1 = ∠ADE. Mà hai góc này ở vị trí đồng vị nên suy ra BC // DE.
Xét ΔABM và ΔACM có:
AB = AC ( giả thiết)
BM = CM ( vì M là trung điểm BC )
AM chung
⇒ ΔABM = ΔACM (c.c.c)
⇒ ∠AMB = ∠AMC (hai góc tương ứng)
Mà ∠AMB + ∠AMC = 180o
⇒ ∠AMB = ∠AMC = 90o hay AM ⊥ BC
Chứng minh tương tự ta có: IM ⊥ BC
⇒ A, I, M thẳng hàng (Qua 1 điểm ta kẻ được duy nhất 1 đường thẳng vuông góc với đường thẳng cho trước)
a, đơn giản ta CM được hai tam giác DCB và EBC bằng nhau => góc EBC = góc DCB => tam giác BIC cân tại I => IB = IC (đpcm)
tương tự chứng minh được hai tam giác DIB và EIC bằng nhau => ID = IE (đpcm)
b, ta có tam giác DAE cân tại A => 2góc D = 180o -góc A
tam giác BAC cân tại A => 2 góc B = 180o - góc A
=> góc D = góc B => BC// DE (đpcm)
c, Nối AM => AM vừa là trung tuyến vừa là đường trung trựctại M của BC
Nối IM => IM vừ là trung tuyến vừa là đường trung trực tại M của BC
=> AM và IM cùng nằm trên đường trung trực của BC tại M hay 3 điểm A,M,I thẳng hàng
a) Tam giác ABC cân tại A suy ra \(\widehat{B_1}=\widehat{C_1}\)
Xét tam giác ABM và tam giác ACM có :
AB = AC ( tam giác ABC cân tại A )
\(\widehat{B_1}=\widehat{C_1}\left(cmt\right)\)
BM = CM ( gt )
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)
Xét tam giác ABI và tam giác ACI có :
AI chung
AB = AC ( tam giác ABC cân tại A )
\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)
\(\Rightarrow\Delta ABI=\Delta ACI\left(c-g-c\right)\)
\(\Rightarrow IB=IC\)
Vì AD = AB + BD
AE = AC + BC
Mà AB = AC ( tam giác ABC cân tại A )
DB = EC ( gt )
\(\Rightarrow AD=AE\)
Xét tam giác ADI và tam giác AEI có :
AI chung
AD = AE ( cmt )
\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)
\(\Rightarrow\Delta ADI=\Delta AEI\left(c-g-c\right)\)
\(\Rightarrow DI=EI\)hay ID = IE
b) Vì tam giác ABC cân tại A ( gt )
\(\Rightarrow\)\(\widehat{B_1}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
Vì tam giác ADE có AD = AE ( cmt )
Suy ra tam giác ADE cân
\(\Rightarrow\widehat{D}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{B_1}=\widehat{D}\)mà hai góc này ở vị trí đồng vị
Suy ra BC // DE
c) Ta có : \(\widehat{M_2}=\widehat{M_1}\left(\Delta ABM=\Delta ACM\right)\left(cmt\right)\)
Mà \(\widehat{M_1}+\widehat{M_2}=180^o\)( 2 góc này ở vị trí kề bù )
\(\widehat{M_2}=\widehat{M_3}\)( đối đỉnh )
\(\Rightarrow\widehat{M_1}+\widehat{M_3}=180^o\)
\(\Rightarrow\)A ; M ; I thẳng hàng
Ta có: AB+BD=AD
AC+CE=AE
mà AB=AC
và BD=CE
nên AD=AE
Xét ΔCDE và ΔBED có
CE=BD
\(\widehat{CED}=\widehat{BDE}\)
DE chung
Do đó: ΔCDE=ΔBED
Suy ra: \(\widehat{IDE}=\widehat{IED}\)
hay ΔIDE cân tại I
Xét ΔACD và ΔABE có
AC=AB
\(\widehat{A}\) chung
AD=AE
Do đó: ΔACD=ΔABE
Suy ra: CD=BE
Ta có: BI+IE=BE
CI+ID=CD
mà BE=CD
và ID=IE
nên BI=CI