K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2023

a) Xét ∆ADE và ∆ADB ta có:

AE = AB (gt)

���^=���^ (AD là tia phân giác của ���^)

AD (cạnh chung)

 

Do đó ∆ADE = ∆ADB (c.g.c) ⇒���^=���^

Mà ���^ là góc ngoài của tam giác ADE

Nên ���^>���^⇒���^>���^.

b) Ta có ���^>���^(���^ là góc ngoài của tam giác ACD)

Mà ���^>���^ (câu a) ⇒���^>���^

∆CDE có ���^>���^⇒ DC > ED (định lí cạnh đối diện với góc lớn hơn)

Mà ED = BD (∆ADE = ∆ADB). Do vậy DC>BD.

15 tháng 8 2019

b. Giả sử góc ngoài tại đỉnh B của tam giác ABC là ∠(xBC). Ta có:

∠(xBC) + ∠(ABD) = 180o ⇒ ∠(xBC) = 180o - ∠(ABD) (0.5 điểm)

∠(DEC) + ∠(AED) = 180o ⇒ ∠(DEC) = 180o - ∠(AED) (0.5 điểm)

Mà ∠(ABD) = ∠(AED) ( hai góc tương ứng vì ΔABD = ΔAED)(0.5 điểm)

 

Từ đó suy ra ∠(xBC) = ∠(DEC) (0.5 điểm)

21 tháng 5 2019

c. Vì ΔABD = ΔAED ⇒ BD = DE (hai cạnh tương ứng)(0.5 điểm)

Vì ∠(xBC) là góc ngoài của tam giác ABC nên ∠(xBC) > ∠C (0.5 điểm)

Mà ∠(xBC) = ∠(DEC) ̂⇒ ∠(DEC) > ∠C (0.5 điểm)

Trong tam giác ΔDEC có ∠(DEC) > ∠C ⇒ DC > DE mà DE = BD (0.5 điểm)

Suy ra DC > BD (0.5 điểm)

23 tháng 12 2023

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

=>DA=DE

=>D nằm trên đường trung trực của AE(1)

ta có: BA=BE

=>B nằm trên trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

=>BD\(\perp\)AE tại trung điểm của AE

c: Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Ta có: AH\(\perp\)BC

DE\(\perp\)BC

Do đó: AH//DE

d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)

\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)

Do đó: \(\widehat{EDC}=\widehat{ABC}\)

e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAK=ΔDEC

=>AK=EC và DK=DC

Ta có: BA+AK=BK

BE+EC=BC

mà BA=BE và AK=EC

nên BK=BC

=>B nằm trên đường trung trực của KC(3)

Ta có: DK=DC

=>D nằm trên đường trung trực của KC(4)

Ta có: MK=MC

=>M nằm trên đường trung trực của KC(5)

Từ (3),(4),(5) suy ra B,D,M thẳng hàng

a: AB<AC<BC

=>góc C<gócB<góc A

b: Xét ΔABD và ΔEBD có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED
c,d: ΔBAD=ΔBED
=>góc ADB=góc EDB và góc BAD=góc BED=90 độ

=>DB là phân giác của góc ADE và DE vuông góc BC