K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: M là trung điểm của BC, MF⊥AC

a) Xét ΔABM và ΔACM có

AB=AC(ΔABC cân tại A)

AM là cạnh chung

BM=CM(do M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

b) Ta có: ΔABM=ΔACM(cmt)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

hay \(\widehat{EAM}=\widehat{FAM}\)

Xét ΔAME vuông tại E và ΔAMF vuông tại F có

AM là cạnh chung

\(\widehat{EAM}=\widehat{FAM}\)(cmt)

Do đó: ΔAEM=ΔAFM(cạnh huyền-góc nhọn)

⇒AE=AF(hai cạnh tương ứng)

c) Xét ΔAEF có AE=AF(cmt)

nên ΔAEF cân tại A(định nghĩa tam giác cân)

\(\widehat{AEF}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAEF cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AEF}=\widehat{ABC}\)

\(\widehat{AEF}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên EF//BC(dấu hiệu nhận biết hai đường thẳng song song)

14 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b:Sửa đề: Chứng minh AE=AF

Ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

nên EF//BC

d: Xét ΔABN vuông tại B và ΔACN vuông tại C có

AN chung

AB=AC

Do đó: ΔABN=ΔACN

=>BN=CN

=>N nằm trên đường trung trực của BC(1)

Ta có; ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,N thẳng hàng

14 tháng 12 2023

Bạn ơi vì sao góc EAM = góc FAM vậy

a, Vì Tam giác `ABC` cân tại A `=> AB = AC ;`\(\widehat{B}=\widehat{C}\)

Xét Tam giác `AMB` và Tam giác `AMC` có:

`AM chung`

\(\widehat{B}=\widehat{C}\) `(CMT)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `AMC (c-g-c)`

b, Vì Tam giác `AMB =` Tam giác `AMC (a)`

`=>` \(\widehat{EAM}=\widehat{FAM}\) (2 góc tương ứng).

Xét Tam giác `EAM` và Tam giác `FAM` có:

AM chung

\(\widehat{EAM}=\widehat{FAM}\) `(CMT)`

\(\widehat{AEM}=\widehat{AFM}=90^0\)

`=>` Tam giác `EAM =` Tam giác `FAM (ch-gn)`

`=> EA = FA` (2 cạnh tương ứng).

c, *câu này mình hơi bí bn ạ:')

loading...

 

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

5 tháng 12 2018

a) xét tamgiacs AMB và AMC có:

AB=AC (GT)

BM=CM ( vì M là TĐ của BC)

AM chung

=> tam giác AMB =Tam giác AMC (c.c.c)

23 tháng 4 2018

a)Xét tgiac ABM và tgiac ACM,ta cí:

AB=AC(vì tgiac ABC cân tại A)

MC=MB(giả thiết)

AM là cạnh chung

=>tgiac ABM = tgiac ACM(c.c.c)