Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác ABM với ACM có; AM chung AB=AC(gt) BM=MC(gt) =>tam giác ABM=ACM (c.c.c)(đpcm) b,Vì 2 tam giác trên bằng nhau =>AMB=AMC Mà 2 góc kề bù =>góc AMB=AMC=90 độ =>AM vuông góc BC(đpcm) c,Xét tam giác DBM vs DCM có:DM chung DB=DC(gt) BM=MC(gt) =>tam giác DBM=DCM(c.c.c) Mà 2 góc kề bù=>DBM=DCM=90 độ =>3 điểm A,M,D thẳng hàng(đpcm)
a: Xét ΔABM và ΔACM có
AB=AC
AM chug
BM=CM
Do đó: ΔABM=ΔACM
b:
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét ΔAMC vuông tại M và ΔBMD vuông tại M có
MC=MD
MA=MB
Do đó: ΔAMC=ΔBMD
Suy ra: AC=BD
c: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của CB
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
d: Xét tứ giác ABCI có
AI//BC
AI=BC
Do đó: ABCI là hình bình hành
Suy ra: CI//AB
mà CD//AB
và CI,CD có điểm chung là C
nên C,I,D thẳng hàng
A B C M
a) + M là trung điểm của BC (gt)
\(\Rightarrow\)MB = MC ( tính chất) (1)
Xét tam giác ABM và tam giác ACM có: AM chung (2)
AB = AC (gt) (3)
(1)(2)(3) \(\Rightarrow\)Tam giác ABM = tam giác ACM (c-c-c)
Câu b mk thấy vô lí vì BC và AC k trùng nhau mà M là trung điểm của BC nên k thể là trung điểm của AC
Tam giác ABC cân tại A (do AB = AC)
M là trung điểm BC
=> AM là trung tuyến, phân giác, trung trực của tam giác ABC
a) Chứng minh tam giác ABM= ACM
Xét tam giác ABM và tam giác AMC, có
- AB = AC
- AM chung
- MB = MC
=> tam giác ABM= ACM (đpcm)
b) Gọi M là trung điểm của AC. Trên tia MI lấy N sao cho I là trung điểm MN. CM tam giác AIN=CIM suy ra AN//BC
Bạn viết sai đề bài thì phải, theo mình hiểu thì đề đúng phải là:
Gọi I là trung điểm của AC. Trên tia MI lấy N sao cho I là trung điểm MN. Chứng minh tam giác AIN=CIM suy ra AN//BC
Xét tam giác AIN và tam giác CIM, có
- AI = CI (I là trung điểm AC)
- IM = IN (I là trung điểm MN)
- góc I đối nhau
==> tam giác AIN = tam giác CIM (đpcm)
Xét tứ giác AMCN, có
- 2 đường chéo của tứ giác AMCN cắt nhau tại I
- I vừa là trung điểm AC, vừa là trung điểm MB
=> tứ giác AMNC là hình bình hành (định lý hình bình hành có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> AN // MC, mà MC nằm trên BC
=> AN // BC (đpcm)
c) Chứng minh AN vuông góc với AM
Ta có:
- AM vuông góc BC (AM là phân giác, trung trực, trung tuyến của tam giác ABC), nên AM vuông góc BC
- AN // BC (chứng minh trên)
=> AN vuông góc AM (đpcm)
Tự vẽ hình hình này vẽ ko khó đâu.
a) Xét ΔABM và ΔACM có:
AC=AB(gt)
AM là cạnh chung
MC=MB(M là trung điểm BC)
=>ΔABM=ΔACM(c.c.c)
b) Vì ΔABM=ΔACM
=>^AMC=^AMB(hai góc tương ứng)
Xét ΔDMC và ΔDMB có:
MC=MB
^DMC=^DMB
DM là cạnh chung
=>ΔDMC=ΔDMB(c.g.c)
=>DB=DC(hai cạnh tương ứng)
c)Ta thấy ^CMI và ^DMB là hai góc đối đỉnh
=>^CMI=^DMB
Mà ^DMC=^DMB
=>^CMI=^DMC
Xét ΔCMI và ΔCMD có:
MI=MD(M là trung điểm của DI)
^CMI=^DMC
MC:cạnh chung
=>ΔCMI=ΔCMD(c.g.c)
=>^DCM=^MCI(hai góc tương ứng)
=>CM là pg ^DCI
=>CB là pa ^DCI
Câu này bác nào có cách ≠ thì cho cháu bt nhé
Có thêm cách làm khác cho câu c.
Từ bài làm câu a, b em suy ra được. DI vuông BC
Xét tam giác DCI có: CI là đường cao đồng thời là đường trung tuyến ( I là trung điểm DC)
=> Tam giác DIC cân => CI cũng là đường phân giác ^DCI => CB là đường phân giác ^DCB
( Tuy nhiên cô ko biết tính chất trên em đã được học hay chưa. Làm theo cách của em đã ổn rồi _ Gửi Linh )