Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC có:
M là trung điểm AB
N là trung điểm AC
=> MN là đường tb
=> BC=2MN=2.7,5=15(cm)
b) Xét tam giác ABC có:
M là trung điểm AB
P là trung điểm BC
=> MP là đường tb
=> MP//AC và \(MP=\dfrac{1}{2}AC\)
Mà \(N\in AC,AN=\dfrac{1}{2}AC\)(N là trung điểm AC)
=> MP//AN và MP=AN
=> AMPN là hbh
c) Ta có: MN//BC(MN là đường tb)
Mà \(H,P\in BC\)
=> MN//HP
=> MHPN là hthang
Xét tam giác AHC vuông tại H có:
HN là trung tuyến ứng với cạnh huyền
\(\Rightarrow HN=\dfrac{1}{2}AC\)
Mà \(MP=\dfrac{1}{2}AC\left(cmt\right)\)
=> HN=MP
=> MHPN là hthang cân
* Vì D trung điểm của AB (gt) và E trung điểm của AC (gt) nên DE là đường trung bình của tam giác ABC
⇒ DE // BC hay DE // HM
Suy ra tứ giác DEMH là hình thang
* Mà M trung điểm BC (gt) nên DM là đường trung bình của ∆ BAC
⇒ DM = 1/2 AC (tính chất đường trung bình của tam giác) (1)
* Trong tam giác vuông AHC có ∠ (AHC) = 90 0 . HE là đường trung tuyến ứng với cạnh huyền AC.
⇒ HE = 1/2 AC (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: DM = HE
Vậy hình thang DEMH là hình thang cân (vì có 2 đường chéo DM và EH bằng nhau).
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
mà E\(\in\)BC và \(BE=\dfrac{BC}{2}\)
nên MN//BE và MN=BE
Xét tứ giác BMNE có
MN//BE
MN=BE
Do đó: BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến ứng với cạnh huyền AB
nên HM=AM=MB
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến ứng với cạnh huyền AC
nên HN=AN=NC
Ta có: HM=AM
nên M nằm trên đường trung trực của AH\(\left(1\right)\)
Ta có: HN=AN
nên N nằm trên đường trung trực của AH\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra MN là đường trung trực của AH
b: Xét ΔBAC có
M là trung điểm của AB
E là trung điểm của BC
Do đó: ME là đường trung trực của ΔBAC
Suy ra: ME//AC và \(ME=\dfrac{AC}{2}\)
mà \(AN=\dfrac{AC}{2}\)
nên ME=AN
mà AN=HN
nên HN=ME
Xét tứ giác HMNE có
MN//HE
nên HMNE là hình thang
Hình thang HMNE có HN=ME
nên HMNE là hình thang cân
Bài làm:
a) Trong \(\Delta ABC\)có:
AD = BD (gt)
AF = CF (gt)
\(\Rightarrow\)FD là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)FD // BC và FD = \(\frac{1}{2}\)BC
Mà E là trung điểm của đoạn thẳng BC (gt)
\(\Rightarrow\)FD//CE và FD = CE
\(\Rightarrow\)Tứ giác DECF là hình bình hành
b) Ta có hình bình hành DECF là hình chữ nhật khi \(\widehat{C}\)= 90o
\(\Leftrightarrow AC\perp BC\)
Vậy tam giác ABC vuông tại C thì tứ giác DECF là hình chữ nhật
c) Trong hình bình hành DECF có: DE = CF
Mà CF = AF (gt)
\(\Rightarrow\)DE = CF = AF = 13 cm
Mặt khác AC = AF + CF
\(\Rightarrow\)AC = 13 + 13 = 26 cm
Áp dụng định lí Pytago vào \(\Delta ACH\)vuông tại H ta có:
AC2 = AH2 + CH2
\(\Rightarrow\)CH2 = AC2 - AH2
Thay CH2 = 262 - 102
\(\Rightarrow\)CH2 = 676 - 100
\(\Rightarrow\)CH2 = 576
\(\Rightarrow\)CH = \(\sqrt{576}\)= 24
Vậy diện tích tam giác ACH là : \(\frac{1}{2}.10.24=120\left(cm^2\right)\)
d) Hình bình hành DECF có DF//CE
\(\Rightarrow\)DF//HE
\(\Rightarrow\)DFHE là hình thang (1)
Trong \(\Delta ABC\)có:
AD = BD (gt)
BE = CE (gt)
\(\Rightarrow\)DE là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)DE = \(\frac{1}{2}\)AC (2)
Trong \(\Delta ACH\)vuông tại H có: AF = CF (gt)
\(\Rightarrow\)HF là đường trung tuyến ứng với cạnh huyền AC
\(\Rightarrow\)HF = \(\frac{1}{2}\)AC (3)
Từ (2) và (3)\(\Rightarrow\)DE = HF (4)
Từ (1) và (4)\(\Rightarrow\)DFHE là hình thang cân
a/ Xét t/g ABC có D,E lần lượt là trung điểm AB ; AC
=> DE là đường trung bình t/g ABC
=> DE // BC ; DE = BC/2
=> DE // BF ; DE = BF(do F là trung điểm BC)
=> Tứ giác BDEF là hình bình hành
b/ Có BDEF là hbh
=> EF = BD
Xét t/g ABK vuông tại K có KD là đường trung tuyến
=> KD = 1/2 AB = BD=> EF = KD
Mà DE // BC
=> DE // KF
=> Tứ giác DEFK là htc
c/ Xét t/g AHC có ME là đường trung binh
=> ME = 1/2 HC ; ME // HC (1)
Xét t/g BHC có NF là đường trung bình
=> NF = 1/2 HC ; NF // HC (2)
(1) ; (2)
=> ME = NF ; ME // NF (3)
Xét t/g ABH có MN là đường trung bình
=> MN // AB ; MN = 1/2 ABMà
HC ⊥ AB
NF // HC=> MN ⊥ NF (4)(3) ; (4)
=> MNFE là hcn
=> NE = MF ; NE, MF cắt nhau tại trung điểm mỗi đoạn
CMTT ta có đpcm
a: Xét tứ giác AHCE có
D là trung điểm chung của AC và HE
góc AHC=90 độ
Do đó: AHCE là hình chữ nhật
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
=>BC=2*BH=6cm
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot4=2\cdot6=12\left(cm^2\right)\)
* Hình tự vẽ ạ :
a)
Ta có: M là trung điểm của BC => BM = MC mà BM = 3,5cm => MC = 3,5cm => BC = BM+MC = 3,5+3,5=7 (cm)
\(S_{\Delta ABC}=\dfrac{1}{2}AH.BC=19,25\left(cm^2\right)\)
b)
Tam giác ABC có:
+ E là trung điểm của AC (gt)
M là trung điểm của BC (gt)
=> ME là đường trung bình của tam giác ABC
=> ME // AB; ME = 1/2AB ( tính chất đường trung bình )
Ta lại có:
D là trung điểm của AB => AD = BD
mà ME=1/2AB (cmt)
=> ME=BD=AD
Tứ giác BDME có:
ME // BD ( ME // AB )
ME = BD (cmt)
=> tứ giác BDME là hình bình hành