Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác AHB trung tại H có HM là đường trung tuyến nên HM =2AB (1)
Trong tam giác ABC có N là trug điểm của AC, O và K là trug điểm của BC nên NK là đường trng bình của tam giác ABC => NK =2AB
Từ (1) và (2), ta có HM=NK
b, Trong tam giác AHC vuông tại H có HN là đường trung tuyến nên HN=AC (3)
Tam giác ABC có M là trung điểm của AB và K là trung điển của BC nên MK là đường trug bình của tam giác ABC => MK=AC (4)
Từ (3) VÀ (4) ,ta có HN = 2MK
Tam giác ABC có M là trung điểm của AB và N là trung điểm của AC nên MN là đường trung bình của tam giác ABC =>MN//BC hay MN=KH =>MNKH là hình thang .Từ (a) và (b), MNKH là hình thang cân.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
hay MN//BK
Xét tứ giác BMNK có MN//BK
nên BMNK là hình thang
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến ứng với cạnh huyền AB
nên HM=AM=MB
Xét ΔMAH có MA=MH
nên ΔMAH cân tại M
Bài 1 :
a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)
Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)
=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)
Từ (1) và (2) suy ra MNKH là hình thang cân.
b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3)
Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD
=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)
=> BE = CD (4)
Từ (3) và (4) suy ra BCDE là hình thang cân.
Bài 2 :
a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)
Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\); \(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)
\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)
b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC
=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P
Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.
\(\left\{{}\begin{matrix}AM=MB\\AN=NC\end{matrix}\right.\Rightarrow MN\text{ là đtb }\Delta ABC\\ \Rightarrow MN\text{//}BC\Rightarrow MN\text{//}HK\\ \Rightarrow MNKH\text{ là hthang}\)
\(\left\{{}\begin{matrix}AM=MB\\BK=KC\end{matrix}\right.\Rightarrow MK\text{ là đtb }\Delta ABC\\ \Rightarrow MK=\dfrac{1}{2}AC\)
Mà HN là trung tuyến ứng cạnh huyền AC nên \(HN=\dfrac{1}{2}AC\)
\(\Rightarrow MK=HN\\ \text{Vậy }MNKH\text{ là htc}\)
Xét \(\Delta ABC\)có :
M là trung điểm AB
N là trung điểm AC
=> MN là đường trung bình
=> MN // BC , MN = \(\frac{BC}{2}\)
Xét \(\Delta AHC\)có :
HN là trung tuyến
=> HN = AN = NC = \(\frac{AC}{2}\)
Xét \(\Delta ABC\)có :
M là trung điểm AB
K là trung điểm BC
=> MK là đường trung bình
=> MK // AC , MK = \(\frac{AC}{2}\)
=> MK = NH
Xét tứ giác MNKH có :
MN//HK
MK = NH
=> MNKH là hình thang cân
b) Xét \(\Delta AED\)có :
H là trung điểm AE
K là trung điểm AD
=> HK là đường trung bình
=> HK // ED
Xét \(\Delta ACE\)có :
HC là trung trực
=> \(\Delta ACE\)cân tại C
=> AC = CE
Xét tứ giác ACDB có :
K là trung điểm BC
K là trung điểm AD
=> ACDB là hình hình hành
=> AC = BD
Mà CE = AC (cmt)
=> BD =CE
Mà BC // ED
=> BCDE là hình thang cân
a, xét tan giác AHB vuong tại H có HM là đg trung tuyến (gt) nên HM=2AB(1)
trong tam giác abc có N là trung điểm của AC , O và K là trung điểm của BC nên NK là đg trung bình của tam giác ABC => NK=2AB (2)
từ (1) và (2)=> HM=NK
=> MNKH là hình thang cân