Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phân giác của \(\widehat{BAC}\))
AM chung
Do đó: ΔABM=ΔACM(c-g-c)
a) Ta có: ΔABM=ΔACM(cmt)
nên MB=MC(Hai cạnh tương ứng)
Xét ΔMBC có MB=MC(cmt)
nên ΔMBC cân tại M(Định nghĩa tam giác cân)
Trên AC lấy AK=AB thì K nằm giữa A và C, do đó
KC=AC-AB (1)
Ta có ∆AEB=∆AEK (c.g.c). Suy ra EB=EK. Xét ∆EKC ta có
KC>EC-EK nên KC>EC-EB (2)
Từ (1) và (2) suy ra
AC-AB>EC-EB
*Chú ý: Sẽ sai lầm nếu từ EC<AC+AE và EB<AB+AE suy ra EC-EB<AC-AB, vì ko được trừ từng vế hai bất đẳng thức cùng chiều.
Trên cạnh AB lấy điểm N sao cho AN = AC.
\(\Delta AMC=\Delta AMN\)(c.g.c), suy ra \(AC=AN,MC=MN\)
Áp dụng BĐT tam giác cho \(\Delta BMN\), ta có:
\(AB-AC=AB-AN=BN>MB-MN=MB-MC\)