K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

b: BM=CM=3cm

=>AM=4cm

c: Xét ΔHBC có

HM vừa là đường cao, vừa là trung tuyến

=>ΔHBC cân tại H

29 tháng 11 2021

a

vì AM là tia phân giác của góc A=>góc BAM=CAM

xét  tam giác AMB và tam giác AMC có: 

góc BAM=CAM,AM chung,AB=AC=>tam giác AMB = tam giác AMC

b

vì tam giác AMB = tam giác AMC=>MB=MC=>M là trung điểm BC

vì tam giác AMB = tam giác AMC=>góc BAM=CAM mà góc BAM+CAM=180=>BAM=CAM=180 độ/2=90 độ=>AM vuông góc với BC

c

xét tam giác ABM và KCM có

MB=MC,MA=MK,góc BMA=CMK(vì đối đỉnh)=>tam giác ABM = KCM=>AB=CK

vì tam giác ABM = KCM=>góc ABM=KMB mà 2 góc trên ở vị trí so le trog=>AB//CK

29 tháng 11 2021

Xài Telex cho nóa đẹp đy !

6 tháng 2 2022

AB = AC => Tam giác ABC cân tại A

a. Xét tam giác AMB và tam giác AMC

AB = AC ( gt )

Góc B = góc C ( ABC cân )

BM = CM  ( gt )

Vậy...... ( c.g.c)

=> góc BAM = góc CAM ( 2 góc tương ứng )

=> AM là phân giác góc A

b. trong tam giác cân ABC đường phân giác cũng là đường cao

=> AM vuông BC

c.tam giác MEF là tam giác cân vì:

xét tam giác vuông BME và tam giác vuông CMF 

Góc B = góc C

MB = MC ( gt )

Vậy....( cạnh huyền. góc nhọn )

=> ME = MF ( 2 cạnh tương ứng )

Chúc bạn học tốt !!!

 

 

a: Xét ΔAMB và ΔAMC có 

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

Suy ra: ME=MF

hay ΔMEF cân tại M

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

c: BM=CM=3cm

=>AM=4cm

 

a: Xét ΔAMB và ΔAMC có

AB=AC

BM=CM

AM chung

=>ΔAMB=ΔAMC

b: Xét ΔMAB vuông tại M va ΔMDC vuông tại M có

MB=MC

góc MBA=góc MCD

=>ΔMAB=ΔMDC

=>MA=MD

6 tháng 6 2015

AM LÀ TRUNG TUYẾN =>  MB = MC = 6/2 = 3 cm

áp dụng định lí Pi-ta-go trong tam giác vuông, ta có:

AB2 = AM2 + BM2

=> AM2 = AB2 - BM2 = 52 - 32 = 25 - 9 = 16

=> AM = CĂN CỦA 16 = 4 cm

 

cm: ME = MF 

xét 2 tam giác vuông: EMB VÀ FMC, CÓ:

MB = MC

GÓC EBM = GÓC FMC  (TAM GIÁC ANC CÂN TẠI A)

=> tam giác EMB = TAM GIÁC FMC   (CẠNH HUYỀN - GÓC NHỌN)

=> ME = MF (2 CẠNH TƯƠNG ỨNG)                   (đpcm)