Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: AB = AC = 5cm
=> tam giác ABC cân tại A
=>AH vừa là đường cao, vừa là đường trung trực của tam giác ABC
=>BH=CH= 8/2= 4cm
Tam giác AHB vuông tại H
=> AH2 + BH2 = AB2
AH2 + 42 = 52
AH2 + 16 =25
=> AH2 = 25 - 16 = 9
=> AH = căn bậc hai của 9 = 3 cm
(mình giải xong rồi ! Các bạn cứ vẽ hình sẽ hiểu ngay...hì hì)

a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(Hai cạnh tương ứng) và \(\widehat{BAH}=\widehat{CAH}\)(Hai góc tương ứng)

a)Chứng minh được tam giác ABH= tam giác ACH( ch-cgv)
Suy ra: HB=HC(yttư)(đpcm). Vậy H là trung điểm BC.Suy ra HB=HC=BC:2=8:2=4
và góc BAH=góc CAH(yttư)(đpcm)
b) Ta có: tam giác ABH vuông tại H(AH vuông góc BC)
Suy ra AH^2 + BH^2 =AB^2
Suy ra AH^2+4^2= 5^2
Suy ra AH^2= 9
Mà AH>0
Suy ra AH=3
c) Xét tam giác ADH và tam giác AEH, ta có:
Góc ADH= Góc AEH=90 ĐỘ ( HD vuông góc AB, HE vuông góc AC)
AH là cạnh chung
Góc DAH= Góc EAH(yttư do tam giác ABH= tam giác ACH)
Suy ra tam giác ADH= tam giác AEH(ch-gh)
Suy ra HD=HE(yttư)
Suy ra tam giác HDE cân tại H(đpcm)

tu ve hinh :
AB = AC => tamgiac ABC can tai A (dn)
xet tamgiac AHB va tamgiac AHC co :
AB = AC va goc ABC = gocACB do tamgiac ABC can tai A (cmt)
goc AHB = goc AHC = 90 do AH | BC (gt)
=> tamgiac AHB = tamgiac AHC (ch - gn)
=> HB = HC (dn)
b, cau nay de tu ap dung PY-TA-GO ma lam
c,
+ xet tamgiac DHB va tamgiac EHC co :
goc ABC = goc ACB (cau a)
BH = HC (cau a)
goc BDH = goc HEC = 90 do HD | AB va HE | AC (gt)
=> tamgiac DHB = tamgiac EHC(ch - gn)
=> DH = DE (dn)
=> tamgiac DHE can tai H (dn)
+ co AD + DB = AB
AE + EC = AC
AB = AC (cau a)
BD = EC do tamgiac HDB = tamgiac HEC (cau b)
=> DA = AE
DE cat AH tai O
xet tamgiac DAO va tamgiac EAO co : AO chung
goc BAH = goc CAH do tamgiac AHB = tamgiac AHC (cau a)
=> tamgiac DAO = tamgiac EAO (c - g - c)
=> AD = AE (dn)
=> tamgiac ADE can tai A (dn)
=> goc ADE = (180 - goc BAC) : 2 (tc)
tamgiac ABC can tai A (gt) => goc ABC = (180 - goc BAC) : 2
=> goc ADE = goc ABC ma 2 goc nay dong vi
=> DE//BC (tc)
- tự vẽ hình
a)Xét 2 tam giác vuông ABH và ACH, ta có:
AB=AC(tam giác ABC cân tại A)
Góc ABH = góc ACH(tam giác ABC cân tại A)
Vậy tam giác vuông ABH = tam giác vuông ACH
=> HB=HC(cặp cạnh t/ứng)
và góc BAH = góc CAH (cặp góc t/ứng)
b) Ta có HB=HC(cmt)
mà HB+HC=8 (cm) => HB=HC=4(cm)
Áp dụng định lý pytago vào tam giác vuông AHB, ta có:
AH2+BH2=AB2
=> AH2=AB2-BH2=25-16=9 => AH=3
c) Xét tam giác vuông BDH và tam giác vuông CEH, ta có:
BH=HC(cmt)
góc DBH=góc ECH(tam giác ABC cân tại A)
Vậy tam giác vuông BDH = tam giác vuông CEH
=> DH=EH(cặp cạnh t/ứng)
=> tam giác HDE là tam giác cân tại H
d) c/m DE//BC( ko có câu d nhưng vt cho dễ nhìn)
Góc BHD=Góc CHE(tam giác vuông BDH = tam giác vuông CEH)
Ta có: Góc BHD + góc CHE+ góc DHE=180 độ
-Góc HDE+Góc DEH+ Góc DHE-180 độ(tổng 3 góc của 1 tam giác)
Mà Góc BHD=Góc CHE và Góc HDE=Góc DEH(tam giác HDE cân tại H)
=> Góc BHD=Góc CHE = Góc HDE=Góc DEH
Mà hai góc DEH và CHE ở vị trí so le trong
=> DE//BC

a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:
AH: chung
AB=AC (gt)
=>Tam giác ABH=tam giác ACH (cạnh huyền-cạnh góc vuông)
=>HB=HC (2 cạnh tương ứng)
b)Vì HB=HC (câu a) => HB=HC=BC:2=8:2=4 (cm)
Xét tam giác ABH vuông tại H có: AB2 = AH2 + BH2 (định lý Py-ta-go)
52 = AH2 + 42
AH2 = 52 - 42 = 25-16=9
AH=\(\sqrt{9}=3\)
c) Vì tam giác ABH=tam giác ACH (câu a) => góc BAH=góc CAH (2 góc tương ứng)
Xét tam giác ADH vuông tại D và tam giác AEH vuông tại E có:
AH: chung
góc BAH=góc CAH (cmt)
=> Tam giác ADH=tam giác AEH (cạnh huyền-góc nhọn)
=>HD=HE (2 cạnh tương ứng)
=>tam giác DHE cân tại H
d) Tam giác EHC vuông tại E có HC là cạnh huyền =>HC là cạnh lớn nhất trong tam giác EHC hay HC>HE
Mà HE=HD (cmt) => HC>HD

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).
=> AH là đường phân giác góc A (Tính chất tam giác cân).
b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).
=> AH là đường trung tuyến (Tính chất tam giác cân).
=> H là trung điểm của BC.
=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).
Xét tam giác AHB vuông tại A:
Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).
=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)
=> AH = 3 (cm).
c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:
AH chung.
Góc DAH = Góc EAH (AH là đường phân giác góc A).
=> Tam giác AHD = Tam giác AHE (ch - gn).
=> HD = HE (2 cạnh tương ứng).
=> Tam giác DHE cân tại H.