Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (O;R) là đt ngoại tiếp tam giác ABC
Gọi D là gđ của AO và đt (O)
Kẻ đường cao AH => AH vừa là đường cao, đồng thời là đường trung tuyến
ÁP dụng định lí pytago vào tam giác AHB vuông tại H có:\(AH=\sqrt{AB^2-BH^2}=\sqrt{\left(4a\right)^2-\dfrac{BC^2}{4}}\)\(=\sqrt{16a^2-a^2}=a\sqrt{15}\)
Chứng minh được: \(\Delta AHB\sim ACD\left(g.g\right)\)
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{AD}\) \(\Leftrightarrow AD=\dfrac{AB.AC}{AH}=\dfrac{4a.4a}{a\sqrt{15}}=\dfrac{16a\sqrt{15}}{15}\)
\(\Rightarrow R=\dfrac{AD}{2}=\dfrac{8a\sqrt{15}}{15}\)
Chọn đáp án B.
Ta có: A B 2 + A C 2 = B C 2 ( = 100)
Suy ra tam giác ABC vuông tại A.
Do đó, tâm đường tròn ngoại tiếp tam giác ABC là trung điểm cạnh huyền BC.
Đường kính đường tròn là : d = BC = 10cm
Suy ra, bán kính đường tròn ngoại tiếp tam giác ABC là R = d/2 = 5cm
trong tgiac vuông tâm đường tròn ngoại tiếp chính là trung điểm cạnh huyền
Áp dụng định lý pytago vào tgiac vuông ABC ta có :
\(BC^2\)=\(AC^2\)+\(AB^2\)
\(BC^2\)=\(8^2\)+\(6^2\)
\(BC^2\)=100
BC=10
Vậy bán kính đường tròn ngoại tiếp tgiac ABC là:
10:2=5cm
Gọi bk ngoại tiếp là R còn nôi tiếp là r ;p là 1/2 chu vi (= a+b+c/2)
ra có R=BC/2=5
mà S=pr=(6+8+10)/2r=6*8/2=>r=2
Chọn đáp án B
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp là trung điểm cạnh huyền BC, bán kính là R = BC/2
Theo định lý Pytago ta có nên bán kính R = 25/2