Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
b: Xét ΔNCB vuông tại N và ΔMBC vuông tại M có
BC chung
\(\widehat{NBC}=\widehat{MCB}\)
Do đó: ΔNCB=ΔMBC
Suy ra: \(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:
BC chung.
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).
=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).
=> BN = CM (2 cạnh tương ứng).
Ta có: AB = AN + BN; AC = AM + CM.
Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).
=> AM = AN.
b) Xét tam giác AMN: AM = AN (cmt).
=> Tam giác AMN cân tại A.
c) Xét tam giác ABC:
BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).
I là giao điểm của BM và CN (gt).
=> I là trực tâm.
=> AI là đường cao.
Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.
=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc A chung
=>ΔAMB=ΔANC
b: AN=căn 10^2-8^2=6cm=AM
c: Xét ΔNAH vuông tại N và ΔMAH vuông tại M có
AH chung
AN=AM
=>ΔNAH=ΔMAH
=>góc NAH=góc MAH
=>H nằm trên tia phân giác của góc BAC
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
\(\widehat{NAC}\) chung
Do đó: ΔAMB=ΔANC
Suy ra: MB=NC
b: Ta có: ΔAMB=ΔANC
nên AM=AN
Ta có: AN+NB=AB
AM+MC=AC
mà AN=AM
và AB=AC
nên NB=MC
Xét ΔNBD vuông tại N và ΔMCD vuông tại M có
NB=MC
\(\widehat{NBD}=\widehat{MCD}\)
Do đó: ΔNBD=ΔMCD
Suy ra: ND=MD
c: Ta có: ΔNBD=ΔMCD
nên BD=CD
hay D nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Ta có: EB=EC
nên E nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,D,E thẳng hàng
Ta có:\(\widehat{MBC}=\widehat{NCB}\) ( 2 tia phân giác của 2 góc bằng nhau )
=> Tam giác KBC cân
=> KB = KC
Xét tam giác MBC và tam giác NCB, có:
BC: cạnh chung
\(\widehat{MBC}=\widehat{NCB}\)
^B = ^C
Vậy tam giác MBC = tam giác NCB ( g.c.g )
=> BM = CN
Mà KB = KC
=> KM = KN
=> Tam giác KMN cân tại K
Sửa đề: Vuông góc với AC,AP tại N,P
a: Xét ΔBPI vuông tại P và ΔBMI vuông tại M có
BI chung
\(\widehat{PBI}=\widehat{MBI}\)
Do đó: ΔBPI=ΔBMI
=>BP=BM
b: Xét ΔIMC vuông tại M và ΔINC vuông tại N có
CI chung
\(\widehat{MCI}=\widehat{NCI}\)
Do đó: ΔIMC=ΔINC
=>IM=IN
c: ΔMCI=ΔNCI
=>MC=CN
BP+CN
=BM+MC
=BC
d: ΔBPI=ΔBMI
=>IP=IM
mà IM=IN
nên IP=IN
Xét ΔAPI vuông tại P và ΔANI vuông tại N có
AI chung
IP=IN
Do đó: ΔAPI=ΔANI
=>\(\widehat{PAI}=\widehat{NAI}\)
=>AI là phân giác của \(\widehat{BAC}\)
a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có
BM chung
\(\widehat{ABM}=\widehat{HBM}\)
Do đó: ΔABM=ΔHBM
Suy ra: MA=MH
b: Ta có: MA=MH
mà MH<MC
nên MA<MC
a) Xét `ΔABM` và `ΔACN` có:
`\hat{AMB}=\hat{ANC}=90^o`
`AB=AC(g t)`
`\hat{A}:chung`
`⇒ ΔABM=ΔΔACN(CH-GN)`
`=> AM=AN` (2 cạnh tương ứng)
b) Xét `ΔAHN` và `ΔAHM` có:
`AN=AM(cmt)`
`\hat{ANH}=\hat{AMH}=90^o`
`AH:chung`
`=> ΔAHN=ΔAHM(CH-CGV)`
`=> \hat{NAH}=\hat{MAH}` (2 góc tương ứng)
`=> AH` là tia phân giác của `\hat{NAM}` (hay `\hat{BAC}`) (1)
Xét `ΔABK` và `ΔACK` có:
`AB=AC(g t)`
`AK:chung`
`BK=KC` (K là trung điểm của BC)
`=> ΔABK=ΔACK(c.c.c)`
`=> \hat{BAK}=\hat{CAK}` (2 góc tương ứng)
`=> AK` là tia phân giác của `\hat{BAC}` (2)
Từ (1) và (2) `=>` 3 điểm `A,H,K` thẳng hàng
nguồn: copy
Câu c sai r bạn