K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

-Qua E kẻ đường thẳng song song với AB cắt BC tại I.

-Xét △BDK có: EI//BD (gt)

\(\Rightarrow\dfrac{KD}{KE}=\dfrac{BD}{EI}\) (định lí Ta-let).

-Mà \(BD=CE\) (gt).

\(\Rightarrow\dfrac{KD}{KE}=\dfrac{CE}{EI}\)

-Xét △ABC có: EI//AB (gt)

\(\Rightarrow\dfrac{CE}{AC}=\dfrac{EI}{AB}\)(định lí Ta-let).

\(\Rightarrow\dfrac{CE}{EI}=\dfrac{AC}{AB}\)

Mà \(\dfrac{KD}{KE}=\dfrac{CE}{EI}\) (cmt)

\(\Rightarrow\dfrac{KD}{KE}=\dfrac{AC}{AB}=\dfrac{\dfrac{3}{2}AB}{AB}=\dfrac{3}{2}\)

23 tháng 2 2022

-Vậy \(\dfrac{KD}{KE}\) không phụ thuộc vào vị trí điểm D,E.

30 tháng 1 2020

Trên BC lấy G sao cho DG // AC

Dễ dàng suy ra \(\Delta BDG\approx\Delta BAC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{DB}{DG}\)(1)

Vì EC // DG nên áp dụng định lý Thalès vào tam giác KDG, ta được:

\(\frac{KE}{KD}=\frac{EC}{DG}\)hay \(\frac{KE}{KD}=\frac{BD}{DG}\)(vì BD = CE (gt))         (2)

Từ (1) và (2) suy ra \(\frac{KE}{KD}=\frac{AB}{AC}\left(đpcm\right)\)

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.a) Tính các tỷ số số AB/ BC và  BC/CDb) Chứng minh BC2 = AB.CD2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.a) Tính tỉ số AB/CDb) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai...
Đọc tiếp

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.

a) Tính các tỷ số số AB/ BC và  BC/CD

b) Chứng minh BC2 = AB.CD

2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.

a) Tính tỉ số AB/CD

b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD 

Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.

a) Chứng minh AD/BD = AE/EC

b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.

Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.

a) Chứng minh AD/AB = AE/AC

b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC

Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:

a) Tỷ số DE/AE

b) Độ dài các đoạn thẳng AE, DE và AD.

Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC

b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.

0
22 tháng 2 2018

Qua D vẽ DH // với AC  ( H thuộc BC )

ta có tam giác BDH ~ tam giác BAC

suy ra BD/DH=AB/AC

áp dụng dlý talét vào tam giác KDH ta có

KE/KD=CE/DH

mà CE=BD 

suy ra KE/KD=BD/DH=AB/ACdpcm